
SimEvents®

User’s Guide

R2011b



How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

SimEvents® User’s Guide

© COPYRIGHT 2005–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)





Contents

Working with Entities

1
Generating Entities When Events Occur . . . . . . . . . . . . . 1-2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Sample Use Cases for Event-Based Generation of
Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Specifying Generation Times for Entities . . . . . . . . . . . . 1-4
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Procedure for Generating Entities at Specified Times . . . . 1-4

Setting Attributes of Entities . . . . . . . . . . . . . . . . . . . . . . . 1-6
Role of Attributes in SimEvents Models . . . . . . . . . . . . . . . 1-6
Blocks That Set Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Example: Setting Attributes . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Example: Attaching Data Instead of Branching a Signal . . 1-11

Manipulating Attributes of Entities . . . . . . . . . . . . . . . . . 1-12
Choice of Approaches for Manipulating Attributes . . . . . . . 1-12
Writing Functions to Manipulate Attributes . . . . . . . . . . . . 1-12
Using Block Diagrams to Manipulate Attributes . . . . . . . . 1-15

Accessing Attributes of Entities . . . . . . . . . . . . . . . . . . . . . 1-18

Counting Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
Counting Departures Across the Simulation . . . . . . . . . . . . 1-20
Counting Departures per Time Instant . . . . . . . . . . . . . . . . 1-20
Resetting a Counter Upon an Event . . . . . . . . . . . . . . . . . . 1-22
Associating Each Entity with Its Index . . . . . . . . . . . . . . . . 1-24

Combining Entities and Allocating Resources . . . . . . . . 1-25
Overview of the Entity-Combining Operation . . . . . . . . . . . 1-25
Example: Waiting to Combine Entities . . . . . . . . . . . . . . . . 1-26
Example: Copying Timers When Combining Entities . . . . 1-27
Example: Managing Data in Composite Entities . . . . . . . . 1-28

v



Replicating Entities on Multiple Paths . . . . . . . . . . . . . . 1-33
Sample Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-33
Modeling Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-33

Attribute Value Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35

Working with Events

2
Supported Events in SimEvents Models . . . . . . . . . . . . . 2-2
Types of Supported Events . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Signal-Based Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Example: Event Calendar Usage for a Queue-Server
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Overview of Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Start of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Generation of First Entity . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Generation of Second Entity . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Completion of Service Time . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Generation of Third Entity . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Generation of Fourth Entity . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Completion of Service Time . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

Observing Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Techniques for Observing Events . . . . . . . . . . . . . . . . . . . . . 2-15
Example: Observing Service Completions . . . . . . . . . . . . . . 2-19
Example: Detecting Collisions by Comparing Events . . . . 2-22

Generating Function-Call Events . . . . . . . . . . . . . . . . . . . 2-25
Role of Explicitly Generated Events . . . . . . . . . . . . . . . . . . 2-25
Generating Events When Other Events Occur . . . . . . . . . . 2-25
Generating Events Using Intergeneration Times . . . . . . . . 2-27

Manipulating Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29
Reasons to Manipulate Events . . . . . . . . . . . . . . . . . . . . . . . 2-29
Blocks for Manipulating Events . . . . . . . . . . . . . . . . . . . . . . 2-31

vi Contents



Creating a Union of Multiple Events . . . . . . . . . . . . . . . . . . 2-31
Translating Events to Control the Processing Sequence . . 2-33
Conditionalizing Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35

Managing Simultaneous Events

3
Overview of Simultaneous Events . . . . . . . . . . . . . . . . . . . 3-2

Exploring Simultaneous Events . . . . . . . . . . . . . . . . . . . . . 3-4
Using Nearby Breakpoints to Focus on a Particular
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

For Further Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

Choosing an Approach for Simultaneous Events . . . . . . 3-7

Assigning Event Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Procedure for Assigning Event Priorities . . . . . . . . . . . . . . 3-8
Tips for Choosing Event Priority Values . . . . . . . . . . . . . . . 3-8
Procedure for Specifying Equal-Priority Behavior . . . . . . . 3-9

Example: Choices of Values for Event Priorities . . . . . . 3-11
Overview of Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Arbitrary Resolution of Signal Updates . . . . . . . . . . . . . . . . 3-12
Selecting a Port First . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Generating Entities First . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Randomly Selecting a Sequence . . . . . . . . . . . . . . . . . . . . . . 3-24

Example: Effects of Specifying Event Priorities . . . . . . 3-26
Overview of the Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
Default Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
Deferring Gate Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28

vii



Working with Signals

4
Role of Event-Based Signals in SimEvents Models . . . . 4-2
Overview of Event-Based Signals . . . . . . . . . . . . . . . . . . . . 4-2
Comparison with Time-Based Signals . . . . . . . . . . . . . . . . . 4-2
Tips for Using Event-Based Signals . . . . . . . . . . . . . . . . . . 4-3
Signal Restrictions for Event-Based Signals . . . . . . . . . . . . 4-3

Generating Random Signals . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Generating Random Event-Based Signals . . . . . . . . . . . . . 4-4
Examples of Random Event-Based Signals . . . . . . . . . . . . . 4-5

Using Data Sets to Create Event-Based Signals . . . . . . . 4-7
Behavior of the Event-Based Sequence Block . . . . . . . . . . . 4-7
Generating Sequences Based on Arbitrary Events . . . . . . . 4-8

Converting Between Time-Based and Event-Based
Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
When to Convert Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
When Not to Convert Signals . . . . . . . . . . . . . . . . . . . . . . . . 4-11
How to Convert Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Gateway Blocks Convert Bus Signals to Non-Bus Signals
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Manipulating Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
Specifying Initial Values of Event-Based Signals . . . . . . . . 4-14
Example: Resampling a Signal Based on Events . . . . . . . . 4-15

Sending Data to the MATLAB Workspace . . . . . . . . . . . . 4-17
Behavior of the Discrete Event Signal to Workspace
Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

Example: Sending Queue Length to the Workspace . . . . . . 4-17

Working with Multivalued Signals . . . . . . . . . . . . . . . . . . 4-20
Zero-Duration Values of Signals . . . . . . . . . . . . . . . . . . . . . 4-20
Importance of Zero-Duration Values . . . . . . . . . . . . . . . . . . 4-21
Detecting Zero-Duration Values . . . . . . . . . . . . . . . . . . . . . . 4-21

viii Contents



Modeling Queues and Servers

5
Example: LIFO Queue Waiting Time . . . . . . . . . . . . . . . . 5-2

Sorting by Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Behavior of the Priority Queue Block . . . . . . . . . . . . . . . . . 5-4
Example: FIFO and LIFO as Special Cases of a Priority
Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Example: Serving Preferred Customers First . . . . . . . . . . . 5-7

Preempting an Entity in a Server . . . . . . . . . . . . . . . . . . . 5-10
Definition of Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Criteria for Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Residual Service Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Queuing Disciplines for Preemptive Servers . . . . . . . . . . . . 5-11
Example: Preemption by High-Priority Entities . . . . . . . . . 5-11

Determining Whether a Queue Is Nonempty . . . . . . . . . 5-16

Modeling Multiple Servers . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Blocks that Model Multiple Servers . . . . . . . . . . . . . . . . . . . 5-17
Example: M/M/5 Queuing System . . . . . . . . . . . . . . . . . . . . 5-17

Modeling the Failure of a Server . . . . . . . . . . . . . . . . . . . . 5-19
Server States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
Using a Gate to Implement a Failure State . . . . . . . . . . . . 5-19
Using Stateflow Charts to Implement a Failure State . . . . 5-20

Routing Techniques

6
Output Switching Based on a Signal . . . . . . . . . . . . . . . . . 6-2
Specifying an Initial Port Selection . . . . . . . . . . . . . . . . . . . 6-2
Using the Storage Option to Prevent Latency Problems . . 6-2

ix



Example: Cascaded Switches with Skewed
Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6

Example: Compound Switching Logic . . . . . . . . . . . . . . . 6-7

Example: Choosing the Shortest Queue . . . . . . . . . . . . . . 6-10

Regulating Arrivals Using Gates

7
Role of Gates in SimEvents Models . . . . . . . . . . . . . . . . . . 7-2
Overview of Gate Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Types of Gate Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

Keeping a Gate Open Over a Time Interval . . . . . . . . . . 7-4
Behavior of Enabled Gate Block . . . . . . . . . . . . . . . . . . . . . . 7-4
Example: Controlling Joint Availability of Two Servers . . 7-4

Opening a Gate Instantaneously . . . . . . . . . . . . . . . . . . . . 7-6
Behavior of Release Gate Block . . . . . . . . . . . . . . . . . . . . . . 7-6
Example: Synchronizing Service Start Times with the
Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6

Example: Opening a Gate Upon Entity Departures . . . . . . 7-7

Adding Gating Logic Using Combinations of Gates . . . 7-9
Effect of Combining Gates . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Example: First Entity as a Special Case . . . . . . . . . . . . . . . 7-11

Forcing Departures Using Timeouts

8
Role of Timeouts in SimEvents Models . . . . . . . . . . . . . . 8-2

Basic Example Using Timeouts . . . . . . . . . . . . . . . . . . . . . 8-3

x Contents



Basic Procedure for Using Timeouts . . . . . . . . . . . . . . . . 8-4
Schematic Illustrating Procedure . . . . . . . . . . . . . . . . . . . . 8-4
Step 1: Designate the Entity Path . . . . . . . . . . . . . . . . . . . . 8-5
Step 2: Specify the Timeout Interval . . . . . . . . . . . . . . . . . . 8-5
Step 3: Specify Destinations for Timed-Out Entities . . . . . 8-6

Defining Entity Paths on Which Timeouts Apply . . . . . 8-7
Linear Path for Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7
Branched Path for Timeouts . . . . . . . . . . . . . . . . . . . . . . . . 8-8
Feedback Path for Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . 8-8

Handling Entities That Time Out . . . . . . . . . . . . . . . . . . . 8-10
Common Requirements for Handling Timed-Out
Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10

Techniques for Handling Timed-Out Entities . . . . . . . . . . . 8-10
Example: Rerouting Timed-Out Entities to Expedite
Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11

Example: Limiting the Time Until Service
Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13

Computations on Event-Based Signals

9
Choice of Modeling Constructs for Computations . . . . . 9-2

Performing Computations in Atomic Subsystems . . . . . 9-8
When to Use Atomic Subsystems for Computations on
Event-Based Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8

How to Set Up Atomic Subsystems for Computations . . . . 9-8
Behavior of Computations in Atomic Subsystems . . . . . . . 9-9
Refining the Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10
Examples That Use Atomic Subsystems . . . . . . . . . . . . . . . 9-12

Suppressing Computations By Filtering Out Events . . 9-13
When to Suppress Computations . . . . . . . . . . . . . . . . . . . . . 9-13
How to Set Up Event Filter Blocks . . . . . . . . . . . . . . . . . . . 9-15
Behavior of Event Filter Blocks . . . . . . . . . . . . . . . . . . . . . . 9-17

xi



Evaluating the Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17
Examples That Use Event Filter Blocks . . . . . . . . . . . . . . . 9-18

Performing Computations in Function-Call
Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19
When to Use Function-Call Subsystems for Computations
on Event-Based Signals . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19

How to Set Up Function-Call Subsystems for
Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19

Behavior of Computations in Function-Call Subsystems . . 9-20
Refining the Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21
Examples That Use Function-Call Subsystems . . . . . . . . . 9-21

Blocks Inside Subsystems with Event-Based Input
Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22

Performing Computations Without Using
Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-23
When to Perform Computations on Event-Based Signals
Without Using Subsystems . . . . . . . . . . . . . . . . . . . . . . . 9-23

How to Set Up Blocks for Computations . . . . . . . . . . . . . . . 9-23
Behavior of Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 9-23
Refining the Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24
Examples That Perform Computations Without Using
Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25

Example: Computation With and Without Atomic
Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-26

Plotting Data

10
Choosing and Configuring Plotting Blocks . . . . . . . . . . . 10-2
Sources of Data for Plotting . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Comparison of Blocks for Plotting Signals Against Time . . 10-3
Inserting and Connecting Scope Blocks . . . . . . . . . . . . . . . . 10-5
Connections Among Points in Plots . . . . . . . . . . . . . . . . . . . 10-6
Varying Axis Limits Automatically . . . . . . . . . . . . . . . . . . . 10-7
Caching Data in Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8

xii Contents



Examples Using Scope Blocks . . . . . . . . . . . . . . . . . . . . . . . 10-8

Working with Scope Plots . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
Customizing Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
Exporting Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11

Using Plots for Troubleshooting . . . . . . . . . . . . . . . . . . . . 10-12

Example: Plotting Entity Departures to Verify
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-13

Example: Plotting Event Counts to Check for
Simultaneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15

Using Statistics

11
Statistics for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

Statistics for Run-Time Control . . . . . . . . . . . . . . . . . . . . . 11-3

Statistical Tools for Discrete-Event Simulation . . . . . . . 11-4

Accessing Statistics from SimEvents Blocks . . . . . . . . . . 11-5

Deriving Custom Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 11-7
Overview of Approaches to Custom Statistics . . . . . . . . . . . 11-7
Graphical Block-Diagram Approach . . . . . . . . . . . . . . . . . . 11-7
Coded Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8
Post-Simulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8
Example: Fraction of Dropped Messages . . . . . . . . . . . . . . 11-8
Example: Computing a Time Average of a Signal . . . . . . . 11-9
Example: Resetting an Average Periodically . . . . . . . . . . . 11-12

Measuring Point-to-Point Delays . . . . . . . . . . . . . . . . . . . . 11-18
Overview of Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18

xiii



Basic Example Using Timer Blocks . . . . . . . . . . . . . . . . . . . 11-19
Basic Procedure for Using Timer Blocks . . . . . . . . . . . . . . . 11-20
Timing Multiple Entity Paths with One Timer . . . . . . . . . . 11-21
Restarting a Timer from Zero . . . . . . . . . . . . . . . . . . . . . . . . 11-22
Timing Multiple Processes Independently . . . . . . . . . . . . . 11-22

Varying Simulation Results by Managing Seeds . . . . . . 11-24
Connection Between Random Numbers and Seeds . . . . . . . 11-24
Making Results Repeatable by Storing Sets of Seeds . . . . . 11-25
Setting Seed Values Programmatically . . . . . . . . . . . . . . . . 11-26
Sharing Seeds Among Models . . . . . . . . . . . . . . . . . . . . . . . 11-26
Working with Seeds Not in SimEvents Blocks . . . . . . . . . . 11-27
Choosing Seed Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-29

Regulating the Simulation Length . . . . . . . . . . . . . . . . . . 11-30
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-30
Setting a Fixed Stop Time . . . . . . . . . . . . . . . . . . . . . . . . . . 11-30
Stopping Upon Processing a Fixed Number of Entities . . . 11-31
Stopping Upon Reaching a Particular State . . . . . . . . . . . . 11-32

Using Stateflow Charts in SimEvents Models

12
Role of Stateflow Charts in SimEvents Models . . . . . . . 12-2

Guidelines for Using Stateflow and SimEvents
Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3

Examples Using Stateflow Charts and SimEvents
Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Failure State of Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Go-Back-N ARQ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4

xiv Contents



Debugging Discrete-Event Simulations

13
Overview of Debugging Resources . . . . . . . . . . . . . . . . . . 13-2

Overview of the SimEvents Debugger . . . . . . . . . . . . . . . 13-3

Starting the SimEvents Debugger . . . . . . . . . . . . . . . . . . . 13-5

The Debugger Environment . . . . . . . . . . . . . . . . . . . . . . . . 13-7
Debugger Command Prompt . . . . . . . . . . . . . . . . . . . . . . . . 13-7
Simulation Log in the Debugger . . . . . . . . . . . . . . . . . . . . . 13-8
Identifiers in the Debugger . . . . . . . . . . . . . . . . . . . . . . . . . 13-19

Independent Operations and Consequences in the
Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-21
Significance of Independent Operations . . . . . . . . . . . . . . . 13-21
Independent Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-21
Consequences of Independent Operations . . . . . . . . . . . . . . 13-22

Stopping the Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-25
How to End the Debugger Session . . . . . . . . . . . . . . . . . . . . 13-25
Comparison of Simulation Control Functions . . . . . . . . . . . 13-25

Stepping Through the Simulation . . . . . . . . . . . . . . . . . . . 13-27
Overview of Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-27
How to Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-28
Choosing the Granularity of a Step . . . . . . . . . . . . . . . . . . . 13-29
Tips for Stepping Through the Simulation . . . . . . . . . . . . . 13-30

Inspecting the Current Point in the Debugger . . . . . . . . 13-32
Viewing the Current Operation . . . . . . . . . . . . . . . . . . . . . . 13-32
Obtaining Information Associated with the Current
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-32

Inspecting Entities, Blocks, and Events . . . . . . . . . . . . . . 13-34
Inspecting Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-34
Inspecting Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-36
Inspecting Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-38

xv



Obtaining Identifiers of Entities, Blocks, and Events . . . . 13-38

Working with Debugging Information in Variables . . . 13-41
Comparison of Variables with Inspection Displays . . . . . . . 13-41
Functions That Return Debugging Information in
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-41

How to Create Variables Using State Inspection
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-42

Tips for Manipulating Structures and Cell Arrays . . . . . . . 13-43
Example: Finding the Number of Entities in Busy
Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-43

Viewing the Event Calendar . . . . . . . . . . . . . . . . . . . . . . . . 13-46
For Further Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-46

Customizing the Debugger Simulation Log . . . . . . . . . . . 13-47
Customizable Information in the Simulation Log . . . . . . . . 13-47
Tips for Choosing Appropriate Detail Settings . . . . . . . . . . 13-48
Effect of Detail Settings on Stepping . . . . . . . . . . . . . . . . . . 13-50
How to View Current Detail Settings . . . . . . . . . . . . . . . . . 13-52
How to Change Detail Settings . . . . . . . . . . . . . . . . . . . . . . 13-52
How to Save and Restore Detail Settings . . . . . . . . . . . . . . 13-53

Debugger Efficiency Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-55
Executing Commands Automatically When the Debugger
Starts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-55

Creating Shortcuts for Debugger Commands . . . . . . . . . . . 13-56

Defining a Breakpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-57
What Is a Breakpoint? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-57
Identifying a Point of Interest . . . . . . . . . . . . . . . . . . . . . . . 13-57
Setting a Breakpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-59
Viewing All Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-61

Using Breakpoints During Debugging . . . . . . . . . . . . . . . 13-63
Running the Simulation Until the Next Breakpoint . . . . . 13-63
Ignoring or Removing Breakpoints . . . . . . . . . . . . . . . . . . . 13-64
Enabling a Disabled Breakpoint . . . . . . . . . . . . . . . . . . . . . 13-65

Block Operations Relevant for Block Breakpoints . . . . 13-67

xvi Contents



Animating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-74
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-74
Starting and Stopping Animation . . . . . . . . . . . . . . . . . . . . 13-75
Animating Signals and Entities . . . . . . . . . . . . . . . . . . . . . . 13-75
Controlling Animation Speed . . . . . . . . . . . . . . . . . . . . . . . . 13-76
Animating the Output Switching Using Signal Model . . . . 13-76

Common Problems in SimEvents Models . . . . . . . . . . . . . 13-78
Unexpectedly Simultaneous Events . . . . . . . . . . . . . . . . . . . 13-78
Unexpectedly Nonsimultaneous Events . . . . . . . . . . . . . . . 13-78
Unexpected Processing Sequence for Simultaneous
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-79

Unexpected Use of Old Value of Signal . . . . . . . . . . . . . . . . 13-80
Effect of Initial Value on Signal Loops . . . . . . . . . . . . . . . . 13-82
Loops in Entity Paths Without Sufficient Storage
Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-85

Unexpected Timing of Random Signal . . . . . . . . . . . . . . . . . 13-88
Unexpected Correlation of Random Processes . . . . . . . . . . 13-90
Blocks that Require Event-Based Signal Input . . . . . . . . . 13-91

Recognizing Latency in Signal Updates . . . . . . . . . . . . . . 13-92

Learning More About SimEvents Software

14
Execution of Blocks Having Event-Based Input
Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
Response to Event-Based Input Signals . . . . . . . . . . . . . . . 14-2
Arbitrary Execution Sequences . . . . . . . . . . . . . . . . . . . . . . 14-5

Event Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9
Processing Sequence for Simultaneous Events . . . . . . . . . . 14-9
Role of the Event Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10
For Further Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-12

Choosing How to Resolve Simultaneous Signal
Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14

xvii



Resolution Sequence for Input Signals . . . . . . . . . . . . . . 14-15
Detection of Signal Updates . . . . . . . . . . . . . . . . . . . . . . . . . 14-15
Effect of Simultaneous Operations . . . . . . . . . . . . . . . . . . . . 14-16
Resolving the Set of Operations . . . . . . . . . . . . . . . . . . . . . . 14-17
Specifying Event Priorities to Resolve Simultaneous Signal
Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-17

Resolving Simultaneous Signal Updates Without Specifying
Event Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19

For Further Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-22

Livelock Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
Permitting Large Finite Numbers of Simultaneous
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24

Signal-Based Event Cycle Prevention . . . . . . . . . . . . . . . 14-25

Notifications and Queries Among Blocks . . . . . . . . . . . . 14-29
Overview of Notifications and Queries . . . . . . . . . . . . . . . . 14-29
Querying Whether a Subsequent Block Can Accept an
Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-29

Notifying Blocks About Status Changes . . . . . . . . . . . . . . . 14-30

Notifying, Monitoring, and Reactive Ports . . . . . . . . . . . 14-32
Overview of Signal Input Ports of SimEvents Blocks . . . . . 14-32
Notifying Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-32
Monitoring Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-33
Reactive Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-34

Interleaving of Block Operations . . . . . . . . . . . . . . . . . . . . 14-36
Overview of Interleaving of Block Operations . . . . . . . . . . . 14-36
How Interleaving of Block Operations Occurs . . . . . . . . . . 14-36
Example: Sequence of Departures and Statistical
Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-37

Update Sequence for Output Signals . . . . . . . . . . . . . . . . 14-42
Determining the Update Sequence . . . . . . . . . . . . . . . . . . . 14-42
Example: Detecting Changes in the Last-Updated
Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-43

SimEvents Support for Simulink Subsystems . . . . . . . . 14-45

xviii Contents



Variant Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-45
Virtual and Nonvirtual Subsystems . . . . . . . . . . . . . . . . . . 14-45

Storage and Nonstorage Blocks . . . . . . . . . . . . . . . . . . . . . 14-46
Storage Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-46
Nonstorage Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-46

Blocks That Support Event-Based Input Signals . . . . . . 14-48
Computational Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-48
Sink Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-49
SimEvents Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-50
Other Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-50

Migrating SimEvents Models

15
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2
Using seupdate to Convert a SimEvents Model . . . . . . . . . 15-2
Expected Changes to Model Contents . . . . . . . . . . . . . . . . . 15-3

Using seupdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4

After You Convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Changes in Behavior of the Model . . . . . . . . . . . . . . . . . . . . 15-6

Model Behavior Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7
Time-Based Execution in Previous Model . . . . . . . . . . . . . . 15-7
Algebraic Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7
Queue Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8
Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-8
Multiple Hits at Time 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-11

Migration Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-12
Potential Misleading Output . . . . . . . . . . . . . . . . . . . . . . . . 15-12

xix



Examples

A
Attributes of Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Counting Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Queuing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Working with Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Working with Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Server States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3

Routing Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3

Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3

Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3

Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4

Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4

Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4

Index

xx Contents



1

Working with Entities

• “Generating Entities When Events Occur” on page 1-2

• “Specifying Generation Times for Entities” on page 1-4

• “Setting Attributes of Entities” on page 1-6

• “Manipulating Attributes of Entities” on page 1-12

• “Accessing Attributes of Entities” on page 1-18

• “Counting Entities” on page 1-20

• “Combining Entities and Allocating Resources” on page 1-25

• “Replicating Entities on Multiple Paths” on page 1-33

• “Attribute Value Support” on page 1-35



1 Working with Entities

Generating Entities When Events Occur

In this section...

“Overview” on page 1-2

“Sample Use Cases for Event-Based Generation of Entities” on page 1-2

Overview
The Event-Based Entity Generator block enables you to generate entities
in response to signal-based events that occur during the simulation. The
Generate entities upon parameter of the block determines:

• The kind of signal input port the block has

• The kinds of events that cause the block to generate an entity

Event times and the time intervals between pairs of successive entities are
not necessarily predictable in advance.

Note The Event-Based Entity Generator block can respond to triggers
and function calls. However, do not place the block inside a triggered
or function-call subsystem. Like other blocks that possess entity ports,
the Event-Based Entity Generator block is not valid inside a triggered or
function-call subsystem.

To specify intergeneration times between pairs of successive entities instead
of using an event-based approach, use the Time-Based Entity Generator
block. For more information, see “Creating Entities Using Intergeneration
Times” in the SimEvents® getting started documentation.

Sample Use Cases for Event-Based Generation of
Entities
Generating entities when events occur is appropriate if you want the
dynamics of your model to determine when to generate entities. For example,

1-2



Generating Entities When Events Occur

• To generate an entity each time a Stateflow® chart transitions from state
A to state B, configure the chart to output a function call upon such a
transition. Then configure the Event-Based Entity Generator block to react
to each function call by generating an entity.

• To generate an entity each time a real-valued statistical signal crosses a
threshold, configure the Event-Based Entity Generator block to react to
triggers. Connect the tr signal input port of the block to the statistical
signal minus the threshold.

In the following figure, the Event-Based Entity Generator block generates
a new entity each time the average waiting time of the queue crosses a
threshold. The threshold is 5 s.

• To generate multiple entities simultaneously, configure the Event-Based
Entity Generator block to react to function calls. Then connect its fcn input
port to a signal that represents multiple function calls. For an example, see
the Preload Queue with Entities demo.

Note If you generate multiple entities simultaneously, then consider
the appropriateness of other blocks in the model. For example, if three
simultaneously generated entities advance to a single server, then consider
inserting a queue between the generator and the server. As a result,
entities (in particular, the second and third entities) have a place to wait
for the server to become available.

1-3



1 Working with Entities

Specifying Generation Times for Entities

In this section...

“Overview” on page 1-4

“Procedure for Generating Entities at Specified Times” on page 1-4

Overview
If you have a list of times, you can configure the Time-Based Entity Generator
block to generate entities at these times. Explicit entity-generation times are
useful if you want to

• Recreate an earlier simulation whose intergeneration times you saved
using a Discrete Event Signal to Workspace block.

• Study the behavior of your model under unusual circumstances and have
created a series of entity generation times that you expect to produce
unusual circumstances.

• Verify simulation behavior that you or someone else observed elsewhere,
such as a result reported in a paper.

Procedure for Generating Entities at Specified Times
To generate entities at specified times, follow this procedure:

1 In the Time-Based Entity Generator block, set the Generate entities
with parameter to Intergeneration time from port t. A signal input
port labeled t appears on the block.

2 Depending on whether you want to generate an entity at T=0, either select
or clear the Generate entity at simulation start option.

3 Create a column vector, gentimes, that lists 0 followed by the nonzero
times at which you want to create entities, in strictly ascending sequence.
You can create this vector using one of these techniques:

• Enter the definition in the MATLAB® Command Window

• Load a MAT-file that you previously created

1-4



Specifying Generation Times for Entities

• Manipulate a variable that a To Workspace or Discrete Event Signal to
Workspace block previously created

An example of a column vector listing generation times is:

gentimes = [0; 0.9; 1.7; 3.8; 3.9; 6];

4 Apply the diff function to the vector of generation times, thus creating
a vector of intergeneration times.

intergentimes = diff(gentimes);

5 Insert an Event-Based Sequence block in the model and connect it to the t
input port of the Time-Based Entity Generator block.

6 In the Event-Based Sequence block, set Vector of output values to
intergentimes. Set the Form output after final data value by
parameter to Setting to infinity. The Setting to infinity option
halts the generation process if the simulation time exceeds your maximum
generation time.

1-5



1 Working with Entities

Setting Attributes of Entities

In this section...

“Role of Attributes in SimEvents Models” on page 1-6

“Blocks That Set Attributes” on page 1-6

“Example: Setting Attributes” on page 1-8

“Example: Attaching Data Instead of Branching a Signal” on page 1-11

Role of Attributes in SimEvents Models
You can attach data to an entity using one or more attributes of the entity.
Each attribute has a name and a numeric value. You can read or change the
values of attributes during the simulation.

For example, suppose your entities represent a message that you are
transmitting across a communication network. You can attach the length
of each particular message to the message itself, using an attribute named
length.

Blocks That Set Attributes
To assign attributes on each arriving entity, use one of the blocks listed in
the following table. Assignments can create new attributes or change the
values of existing attributes.

Data Blocks to Use More Information and
Examples

Constant value Set Attribute
Set Attribute block reference
page
“Example: Setting Attributes”
on page 1-8

Random numbers Event-Based
Random Number
followed by Set
Attribute

“Generating Random Signals”
on page 4-4
Set Attribute block reference
page
“Example: A Packet Switch”

1-6



Setting Attributes of Entities

Data Blocks to Use More Information and
Examples

Elements of
either a vector
in the MATLAB
workspace or a
vector that you
can type in a block
dialog box

Event-Based
Sequence followed
by Set Attribute

“Using Data Sets to Create
Event-Based Signals” on page
4-7
Set Attribute block reference
page
“Example: Setting Attributes”
on page 1-8

Values of an output
argument of a
MATLAB function
that you write

Attribute Function,
or MATLAB
Function followed
by Set Attribute

“Writing Functions to
Manipulate Attributes” on
page 1-12
“Example: Setting Attributes”
on page 1-8

Values of an
event-based signal

Set Attribute
Set Attribute block reference
page
Ethernet Local Area Network
demo, in MAC controller
subsystems

Values of a
time-based signal

Set Attribute
preceded by Timed
to Event Signal

Set Attribute block reference
page
“Converting Between
Time-Based and Event-Based
Signals” on page 4-10
“Building a Simple Hybrid
Model”

Entity count Entity Departure
Counter with
Write count to
attribute check
box selected

“Associating Each Entity with
Its Index” on page 1-24
“Example: Setting Attributes”
on page 1-8

1-7



1 Working with Entities

For Further Information

• “Attribute Value Support” on page 1-35 — Characteristics of data an entity
can store in an attribute

• “Accessing Attributes of Entities” on page 1-18 — How to query entities
for attribute values

• “Combining Entities and Allocating Resources” on page 1-25 — How to
aggregate attributes from distinct entities

Example: Setting Attributes
This example illustrates different ways of assigning attribute values to
entities.

After each entity departs from the Attribute Function block, it possesses the
attributes listed in the table.

1-8



Setting Attributes of Entities

Attribute
Name

Attribute Value Method for Setting Attribute Value

Count N, for the
Nth entity
departing from
the Time-Based
Entity Generator
block

In Entity Departure Counter dialog box:

Write count to attribute check box selected
Attribute name = Count
Actually, the entity generator creates the Count attribute
with a value of 0. The Entity Departure Counter block
sets the attribute value according to the entity count.

Type Constant value of
3

A1 row of table in Set Attribute dialog box:

Name = Type
Value From = Dialog
Value = 3

Length Next number
in the sequence
produced by
Event-Based
Sequence block

Event-Based Sequence block connected to Set Attribute
block in which A2 row of table in dialog box is configured
as follows:

Name = Length
Value From = Signal port

LengthInt floor(Length) Attribute Function block whose function is

function [out_LengthInt] = fcn(Length)
out_LengthInt = floor(Length);

In this example, each Attribute Scope block plots values of a different attribute
over time. Notice from the vertical axes of the plots below that the Count
values increase by 1 with each entity, the Type values are constant, and the
Length values show cyclic repetition of a sequence. For brevity, the example
does not plot LengthInt values, which would look similar to Length values.

1-9



1 Working with Entities

1-10



Setting Attributes of Entities

Example: Attaching Data Instead of Branching a
Signal
In some modeling situations, it is important to attach data to an entity
instead of using a signal directly. This example shows the importance of
considering not only the topology of your block diagrams, but also the timing
of data signals.

The model contains a server with varying service times. Suppose you want
to plot the service time against entity count for each entity departing
from the server. A signal specifies the service time to use for each entity.
Although connecting the same signal to the Signal Scope block appears
correct topologically, the timing in such an arrangement is incorrect. The
incorrectness arises from the delay at the server. That is, the signal has one
value when a given entity arrives at the server and another value when the
same entity arrives at the scope.

To implement the example correctly, attach the service time to each entity
using an attribute and retrieve the attribute value when needed from each
entity. That way, the scope receives the service time associated with each
entity, regardless of the delay between arrival times at the server and the
scope.

1-11



1 Working with Entities

Manipulating Attributes of Entities

In this section...

“Choice of Approaches for Manipulating Attributes” on page 1-12

“Writing Functions to Manipulate Attributes” on page 1-12

“Using Block Diagrams to Manipulate Attributes” on page 1-15

Choice of Approaches for Manipulating Attributes
The table compares approaches for manipulating attributes of entities.

Approach Advantages Details

Write a function that uses
MATLAB code to modify an
attribute or define a new
attribute. Use the Attribute
Function block to invoke your
function for each entity that
arrives at the block.

• Setup requires only one
block.

• Many computations are
simpler to express in code
than in blocks.

“Writing Functions to
Manipulate Attributes” on
page 1-12

Use the Get Attribute, Set
Attribute, and Single Server
blocks to structure the
computation correctly. Use
blocks inside the subsystem
to perform the specific
computation.

• Computation can use signal
data that is not in an
attribute.

“Using Block Diagrams to
Manipulate Attributes” on
page 1-15

Writing Functions to Manipulate Attributes
To manipulate attributes using code, use the Attribute Function block. The
block lets you access existing attributes of the arriving entity, modify the
values of existing attributes, or create new attributes.

For examples that use the block, see

• “Example: Setting Attributes” on page 1-8

1-12



Manipulating Attributes of Entities

• “Attribute Names Unique and Accessible in Composite Entity” on page 1-29.

• Entity Combiner for Assembling Components demo

• Distributed Processing for Multi-Class Jobs demo, within the Distribution
Center subsystem and its Service History Monitor subsystem

Procedure for Using the Attribute Function Block
The Attribute Function block has one entity input port and one entity output
port. The block manipulates attributes of each arriving entity. See “Attribute
Value Support” on page 1-35 for the characteristics of attribute values. To
edit the computation, use this procedure:

1 Display the block’s associated function in an editor window by
double-clicking the Attribute Function block.

2 Write the first line of the function using arguments that reflect the
attributes that the function manipulates. The arguments do not reflect
input or output signals.

Argument-Naming Rules

• Input argument names must match the entity’s attribute names.

• Output argument names must be out_ followed by the names of
attributes to assign to the departing entity.

The entity must possess any attributes named as input arguments of the
function. If the entity does not possess an attribute named using an output
argument of the function, then the block creates the attribute.

The default function definition, below, indicates that the function called
fcn uses the value of the attribute called Attribute1 to compute values of
the attributes called Attribute1 and Attribute2.

function [out_Attribute1, out_Attribute2] = fcn(Attribute1)

3 Write the function to implement your specific computation. The value
of each attribute can be a real- or complex-valued array of any fixed
dimension and double data type, but cannot be a structure. For each

1-13



1 Working with Entities

attribute, the dimensions and complexity must be consistent throughout
the model. Also, the function must use only those MATLAB functions and
operators that are suitable for code generation. For more information,
see “MATLAB Language Features Supported for Code Generation” and
“MATLAB Language Features Not Supported for Code Generation” in the
code generation documentation.

Note If you try to update the diagram or run the simulation for a model that
contains the Attribute Function block, then you must have write access to the
current folder because the application creates files there.

Example: Incorporating Legacy Code
Suppose you already have a file that defines a function that:

• Represents your desired attribute manipulation

• Uses only those MATLAB functions and operators that are suitable for
code generation

The function might or might not satisfy the argument-naming rules for the
Attribute Function block. This example illustrates a technique that can help
you satisfy the naming rule while preserving your legacy code.

1 The top level of the function associated with the Attribute Function block
must satisfy the argument-naming rule. In this example, the function reads
the entity’s x attribute, so the function’s input argument must be called x.
The function assigns a new value to the entity’s x attribute, so the function’s
output argument must be called out_x.

function out_x = update_x_attribute(x)

2 Using the variable names x and out_x, invoke your legacy code. The usage
below assumes that you have called the function mylegacyfcn.

out_x = mylegacyfcn(x);

3 Include your legacy code as either a subfunction or an extrinsic function; see
“Calling Functions for Code Generation” in the code generation documentation
for details.

1-14



Manipulating Attributes of Entities

In your legacy code, the function name and the number of input and output
arguments must be compatible with the invocation above. However, the
legacy code does not need to follow the argument-naming rules for the
Attribute Function block. Below is an example of a function that is compatible
with the invocation above.

function outp = mylegacyfcn(inp)

if inp < 0
outp = 0;

else
if ((inp >= 0) && (inp < 1))

outp = 0.25;
else

outp = 5;
end

end

Using Block Diagrams to Manipulate Attributes
To manipulate attributes using blocks to perform the computation, use an
arrangement as in the following figure.

Top-Level Model

1-15



1 Working with Entities

Subsystem Contents

In your own model, you can vary:

• The number of outputs of the Get Attribute block

• The number of inputs of the Set Attribute block

• The connections or contents of the subsystem, where all input signals of the
subsystem are event-based signals

The key components are in the table.

Block Role

Get Attribute Queries the entity for its attribute
value.

Atomic Subsystem Ensures that the computation
executes as an atomic unit. To learn
more, see “Performing Computations
in Atomic Subsystems” on page 9-8.

Content of the subsystem Models your specific computation.

The earlier figure shows one
example: 5|Attr+x|, where Attr
is an attribute value and x is a
time-based signal converted into an
event-based signal. The subsystem
executes if and only if Attr has a
sample time hit.

1-16



Manipulating Attributes of Entities

Block Role

Single Server with Service time set
to 0

Ensures that the Set Attribute
block uses the up-to-date results of
the computation. For details, see
“Interleaving of Block Operations”
on page 14-36.

Set Attribute Assigns new value to the attribute.

1-17



1 Working with Entities

Accessing Attributes of Entities
The table describes some ways you can access and use data that you have
attached to an entity.

Use Attribute Values To... Technique

Create a signal Use the Get Attribute block.

For example, see the subsystem of the
model described in “Adding Event-Based
Behavior” in the SimEvents getting started
documentation.

Create a plot Use the Attribute Scope block and name
the attribute in the Y attribute name
parameter of the block.

Alternatively, use the X-Y Attribute Scope
block and name two attributes in the X
attribute name and Y attribute name
parameters of the block.

For example, see the reference page for the
X-Y Attribute Scope block.

Compute a different
attribute value

Use the Attribute Function block.

For example, see “Attribute Names Unique
and Accessible in Composite Entity” on page
1-29.

Help specify behavior of a
block that supports the use
of attribute values for block
parameters. Examples are
the service time for a server
and the selected port for an
output switch.

Name the attribute in the block dialog box
as applicable.

For example, see “Example: Using an
Attribute to Select an Output Port” in the
SimEvents getting started documentation.

1-18



Accessing Attributes of Entities

Tip Suppose your entity possesses an attribute containing one of these
quantities:

• Service time

• Switching criterion

• Another quantity that a block can obtain from either an attribute or signal

Use the attribute directly. This is better than creating a signal with the
attribute value and ensuring that the signal is up-to-date when the entity
arrives. For a comparison of the two approaches, see “Example: Using a
Signal or an Attribute” on page 13-80.

1-19



1 Working with Entities

Counting Entities

In this section...

“Counting Departures Across the Simulation” on page 1-20

“Counting Departures per Time Instant” on page 1-20

“Resetting a Counter Upon an Event” on page 1-22

“Associating Each Entity with Its Index” on page 1-24

Counting Departures Across the Simulation
Use the #d or #a output signal from a block to learn how many entities
have departed from (or arrived at) a particular block. The output signal also
indicates when departures occurred. This method of counting is cumulative
throughout the simulation. These examples use the #d output signal to count
departures:

• “Building a Simple Discrete-Event Model” in the SimEvents getting started
documentation

• “Example: First Entity as a Special Case” on page 7-11

• “Stopping Upon Processing a Fixed Number of Entities” on page 11-31

Counting Departures per Time Instant
Suppose you want to visualize entity departures from a particular block,
and you want to reset (that is, restart) the counter at each time instant.
Visualizing departures per time instant can help you:

• Detect simultaneous departures

• Compare the number of simultaneous departures at different time instants

• Visualize the departure times while keeping the plot axis manageable

Use the Instantaneous Entity Counting Scope to plot the number of entities
that have arrived at each time instant. The block restarts the count from 1
when the time changes. As a result, the count is cumulative for a given time
instant, but not cumulative across the entire simulation.

1-20



Counting Entities

Example: Counting Simultaneous Departures from a Server
In this example, the Infinite Server block sometimes completes service on
multiple entities simultaneously. The Instantaneous Entity Counting Scope
indicates how many entities departed from the server at each fixed time
instant during the simulation.

1-21



1 Working with Entities

Resetting a Counter Upon an Event
Suppose you want to count entities that depart from a particular block, and
you want to reset the counter at arbitrary times during the simulation.
Resetting the counter can help you compute statistics for evaluating your
system over portions of the simulation.

The Entity Departure Counter block counts entity departures via a resettable
counter. To configure the block:

1 Decide which type of events you want to reset the counter. The choices are:

• Sample time hits

• Trigger edges

• Value changes

• Function calls

These resources can help you choose which type of events:

• To learn the difference among the kinds of signal-based events, see
“Signal-Based Events” on page 2-4 and “Function Calls” on page 2-5.

• To build a signal that has events at the times that you need them, see
“Manipulating Events” on page 2-29.

1-22



Counting Entities

• To visualize the events of a signal, use the Instantaneous Event
Counting Scope block.

2 In the Entity Departure Counter block, indicate which signal-based events
cause the counter to reset:

• To reset upon sample time hits of an input signal, set Reset counter
upon to Sample time hit from port ts.

• To reset based on a trigger edge in an input signal, set Reset counter
upon to Trigger from port tr. Then set Trigger type to Rising,
Falling, or Either.

• To reset based on a change in the value of an input signal, set Reset
counter upon to Change in signal from port vc. Then set Type of
change in signal value to Rising, Falling, or Either.

• To reset upon function calls, set Reset counter upon to Function
call from port fcn.

3 If you want to specify an explicit priority for the reset event, select Resolve
simultaneous signal updates according to event priority. Then enter
the priority using the Event priority parameter.

4 Click OK or Apply. The block now has a signal input port.

5 Connect an event-based signal to the signal input port.

During the simulation, the block counts departing entities and resets its
counter whenever the input signal satisfies your specified event criteria.

Example: Resetting a Counter After a Transient Period
This example counts entity departures from a queuing system, but resets the
counter after an initial transient period.

1-23



1 Working with Entities

Associating Each Entity with Its Index
Use the Entity Departure Counter block with Write count to attribute
check box selected to associate entity counts with the entities that use a
particular path. The Nth entity departing from the Entity Departure Counter
block has an attribute value of N.

For an example, see “Example: Setting Attributes” on page 1-8.

For an example in which the Entity Departure Counter block is more
straightforward than storing the #d output signal in an attribute, see
“Example: Sequence of Departures and Statistical Updates” on page 14-37.

1-24



Combining Entities and Allocating Resources

Combining Entities and Allocating Resources

In this section...

“Overview of the Entity-Combining Operation” on page 1-25

“Example: Waiting to Combine Entities” on page 1-26

“Example: Copying Timers When Combining Entities” on page 1-27

“Example: Managing Data in Composite Entities” on page 1-28

Overview of the Entity-Combining Operation
You can combine entities from different paths using the Entity Combiner
block. The entities you combine, called component entities, might represent
different parts within a larger item, such as a header, payload, and trailer
that are parts of a packet. Alternatively, you can model resource allocation by
combining an entity that represents a resource with an entity that represents
a part or other item.

The Entity Combiner block and its surrounding blocks automatically detect
when all necessary component entities are present and the result of the
combining operation would be able to advance to a storage block or a block that
destroys entities. In effect, the blocks synchronize the component entities.

The Entity Combiner block provides options for managing information
(attributes and timers) associated with the component entities. You can
also configure the Entity Combiner block to make the combining operation
reversible via the Entity Splitter block.

For Further Information

• Entity Combiner reference page

• Entity Splitter reference page

• Batch Production Process

• Packet Creation, Transmission and Error Analysis

• Kanban Production System

1-25



1 Working with Entities

• Resource Allocation from Multiple Pools

Example: Waiting to Combine Entities
The model below illustrates the synchronization of entities’ advancement by
the Entity Combiner block and its preceding blocks.

The combining operation proceeds when all of these conditions are
simultaneously true:

• The top queue has a pending entity.

• The middle queue has a pending entity.

• The bottom queue has a pending entity.

• The entity input port of the Instantaneous Entity Counting Scope block is
available, which is true throughout the simulation.

The bottom entity generator has the largest intergeneration time among
the three entity generators, and is the limiting factor that determines when
the Entity Combiner block accepts one entity from each queue. The top and
middle queues store pending entities while waiting for the bottom entity
generator to generate its next entity.

1-26



Combining Entities and Allocating Resources

If you change the uniform distribution in the middle entity generator to
produce intergeneration times between 0.5 and 3, then the bottom entity
generator is not consistently the slowest. Nevertheless, the Entity Combiner
block automatically permits the arrival of one entity from each queue as soon
as each queue has a pending entity.

While you could alternatively synchronize the departures from the three
queues using appropriately configured gates, it is simpler and more intuitive
to use the Entity Combiner block as shown.

Example: Copying Timers When Combining Entities
The model below combines an entity representing a product with an entity
representing a box, thus creating an entity that represents a boxed product.
The Entity Combiner block copies the timer from the product to the boxed
product.

The model plots the products’ average age, which is the sum of the time that
a product might wait for a box and the service time for boxed products in
the Infinite Server block. In this simulation, some products wait for boxes,
while some boxes wait for products. The generation of products and boxes are
random processes with the same exponential distribution, but different seeds
for the random number generator.

1-27



1 Working with Entities

Example: Managing Data in Composite Entities
This section illustrates the connection between access to a component entity’s
attributes in a composite entity and uniqueness of the attribute names across
all component entities.

Attribute Names Nonunique and Inaccessible in Composite
Entity
The model below combines component entities representing a header,
payload, and trailer into a composite entity representing a packet. Each
component entity has a Length attribute that the packet stores. When the
Entity Splitter block divides the packet into separate header, payload, and
trailer entities, each has the appropriate attribute. However, Length is not
accessible in the packet (that is, after combining and before splitting). If it
were, the name would be ambiguous because all component entities have
an attribute by that name.

1-28



Combining Entities and Allocating Resources

Attribute Names Unique and Accessible in Composite Entity
The model below uniquely names all attributes of the components and makes
them accessible in the packet. If your primary focus is on data rather than
the entities that carry the data, then you can think of the Entity Combiner
block as aggregating data from different sources.

1-29



1 Working with Entities

The model uses the Attribute Function block and its underlying function to
illustrate these ways of accessing attributes via the composite entity.

1-30



Combining Entities and Allocating Resources

Attribute Operation Attribute Names Use of Attribute
Function Block

Read existing
attributes of the
component entities.

HeaderLength
PayloadLength
TrailerLength

Naming these
attributes as input
arguments of the
function causes the
block to read these
attributes of the
arriving entity.

Change the value of an
existing attribute of a
component. The new
value persists when the
Entity Splitter block
divides the packet into
its component entities.

Status Naming out_Status
as an output argument
of the function causes
the block to update the
Status attribute of the
entity.

Create a new attribute
on the composite entity,
not associated with
any of the component
entities. The new
attribute does not
persist beyond the
Entity Splitter block.

PacketLength Naming
out_PacketLength
as an output
argument causes the
block to create the
PacketLength attribute
on the entity.

Function Underlying the Attribute Function Block.

function [out_PacketLength, out_Status] = packet_length(HeaderLength,...

PayloadLength,TrailerLength)

%PACKET_LENGTH Sum the component lengths and set Status to 1.

out_PacketLength = HeaderLength + PayloadLength + TrailerLength;

out_Status = 1;

1-31



1 Working with Entities

Note The code does not distinguish between output arguments that define
new attributes and output arguments that define new values for existing
attributes. Only by examining other blocks in the model could you determine
that Status is an existing attribute and PacketLength is not.

1-32



Replicating Entities on Multiple Paths

Replicating Entities on Multiple Paths

In this section...

“Sample Use Cases” on page 1-33

“Modeling Notes” on page 1-33

Sample Use Cases
The Replicate block enables you to distribute copies of an entity on multiple
entity paths. Replicating entities might be a requirement of the situation
you are modeling. For example, copies of messages in a multicasting
communication system can advance to multiple transmitters or multiple
recipients.

Similarly, copies of computer jobs can advance to multiple computers in a
cluster so that the jobs can be processed in parallel on different platforms.

In some cases, replicating entities is a convenient modeling construct. For
example, the MAC Controller subsystems in the Ethernet Local Area Network
demo send one copy of an entity for processing and retain another copy of the
same entity for the purpose of observing the state of the channel.

Modeling Notes

• Unlike the Output Switch block, the Replicate block has departures at all
of its entity output ports that are not blocked, not just a single selected
entity output port.

• If your model routes the replicates such that they use a common entity
path, then be aware that blockages can occur during the replication process.
For example, connecting all ports of a Replicate block, Path Combiner
block, and Single Server block in that sequence can create a blockage
because the server can accommodate at most one of the replicates at a time.
The blockage causes fewer than the maximum number of replicates to
depart from the block.

• Each time the Replicate block replicates an entity, the copies depart in a
sequence whose start is determined by the Departure port precedence

1-33



1 Working with Entities

parameter. Although all copies depart at the same time instant, the
sequence might be significant in some modeling situations. For details, see
the reference page for the Replicate block.

1-34



Attribute Value Support

Attribute Value Support
These lists summarize the characteristics of attribute values.

Permitted Characteristics of Attribute Values

• Real or complex

• Array of any dimension, where the dimensions remain fixed throughout
the simulation

• double data type

For a given attribute, the characteristics of the value must be consistent
throughout the discrete-event system in the model.

Not Permitted as Attribute Values

• Structure

• Data types other than double. In particular, strings are not valid as
attribute values.

• Bus

• Variable-size signals or variable-size arrays

• Frame

1-35



1 Working with Entities

1-36



2

Working with Events

• “Supported Events in SimEvents Models” on page 2-2

• “Example: Event Calendar Usage for a Queue-Server Model” on page 2-7

• “Observing Events” on page 2-15

• “Generating Function-Call Events” on page 2-25

• “Manipulating Events” on page 2-29

To learn about working with sets of simultaneous events, see Chapter 3,
“Managing Simultaneous Events”. To view information about events during
the simulation, see Chapter 13, “Debugging Discrete-Event Simulations”.



2 Working with Events

Supported Events in SimEvents Models

In this section...

“Types of Supported Events” on page 2-2

“Signal-Based Events” on page 2-4

“Function Calls” on page 2-5

Types of Supported Events
An event is an instantaneous discrete incident that changes a state variable,
an output, and/or the occurrence of other events. SimEvents software
supports the events listed below.

Event Description

Counter reset Reinitialization of the counter in the Entity
Departure Counter block.

Delayed restart Causes a pending entity in the Time-Based
Entity Generator block to attempt to depart. The
block uses delayed restart events only when you
set Response when unblocked to Delayed
restart.

Entity advancement Departure of an entity from one block and arrival
at another block.

Entity destruction Arrival of an entity at a block that has no entity
output port.

Entity generation Creation of an entity, except in the case of an
Event-Based Entity Generator block that has
suspended the generation of entities.

Entity request Notification that an entity input port has
become available. A preceding block’s response
to the notification might result in an entity
advancement. After each entity advancement, an
Enabled Gate block or a switch block reissues the
notification until no further entity advancement
can occur.

2-2



Supported Events in SimEvents® Models

Event Description

Function call Discrete invocation request carried from block
to block by a special signal called a function-call
signal. For more information, see “Function Calls”
on page 2-5.

Gate (opening or
closing)

Opening or closing of the gate represented by the
Enabled Gate block.

Memory read Reading of memory in the Signal Latch block.

Memory write Writing of memory in the Signal Latch block.

New head of queue Scheduled when there is a new entity at the head
of a queue. Upon execution, it causes the entity at
the head of a queue to attempt to depart.

Port selection Selection of a particular entity port in the Input
Switch, Output Switch, or Path Combiner block.
In the case of the Path Combiner block, the
selected entity input port is the port that the
block notifies first, whenever its entity output
port changes from blocked to unblocked.

Preemption Replacement of an entity in a server by a higher
priority entity.

Release Opening of the gate represented by the Release
Gate block.

Sample time hit Update in the value of a signal that is connected
to a block configured to react to signal updates.

Service completion Completion of service on an entity in a server.

Storage completion Change in the state of the Output Switch block,
making it attempt to advance the stored entity.

Subsystem Execution of Atomic Subsystem block caused by
an appropriate signal-based event in the input
signal of a Event Filter block that connects to the
Atomic Subsystem block.

Timeout Departure of an entity that has exceeded a
previously established time limit.

2-3



2 Working with Events

Event Description

Trigger Rising or falling edge of a signal connected to
a block that is configured to react to relevant
trigger edges. A rising edge is an increase from
a negative or zero value to a positive value (or
zero if the initial value is negative). A falling
edge is a decrease from a positive or a zero value
to a negative value (or zero if the initial value is
positive).

Value change Change in the value of a signal connected to a
block that is configured to react to relevant value
changes.

During a simulation, the application maintains a list, called the event
calendar, of selected upcoming events that are scheduled for the current
simulation time or future times. By referring to the event calendar, the
application executes events at the correct simulation time and in an
appropriate sequence. If a model has multiple discrete-event systems (in
which signals change when events occur), each discrete-event system
maintains its own event calendar. The application executes the event calendar
of each discrete-event system independently of the other discrete-event
systems.

Signal-Based Events
Sample time hits, value changes, and triggers are collectively called
signal-based events. Signal-based events can occur with respect to time-based
or event-based signals. Signal-based events provide a mechanism for a block
to respond to selected state changes in a signal connected to the block. The
kind of state change to which the block responds determines the specific type
of signal-based event.

When comparing the types of signal-based events, note that

• The updated value that results in a sample time hit could be the same as or
different from the previous value of the signal.

• Event-based signals do not necessarily undergo an update at the beginning
of the simulation.

2-4



Supported Events in SimEvents® Models

• Every change in a signal value is also an update in that signal’s value.
However, the opposite is not true because an update that merely reconfirms
the same value is not a change in the value.

• Every rising or falling edge is also a change in the value of the signal.
However, the opposite is not true because a change from one positive value
to another (or from one negative value to another) is not a rising or falling
edge.

• Triggers and value changes can be rising or falling. You configure a block
to determine whether the block considers rising, falling, or either type
to be a relevant occurrence.

• Blocks in the Simulink® libraries are more restrictive than blocks in the
SimEvents libraries regarding trigger edges that rise or fall from zero.
Simulink blocks in discrete-time systems do not consider a change from
zero to be a trigger edge unless the signal remained at zero for more than
one time step; see “Triggered Subsystems” in the Simulink documentation.
SimEvents blocks configured with tr ports consider any change from zero
to a nonzero number to be a trigger edge.

Function Calls
Function calls are discrete invocation requests carried from block to block by
a special signal called a function-call signal. A function-call signal appears
as a dashed line, not a solid line. A function-call signal carries a function
call at discrete times during the simulation and does not have a defined
value at other times. A function-call signal is capable of carrying multiple
function calls at the same value of the simulation clock, representing multiple
simultaneous events.

In SimEvents models, function calls are the best way to make Stateflow blocks
and blocks in the Simulink libraries respond to asynchronous state changes.

Within a discrete-event system, function-calls can generate from these kinds
of blocks:

• Entity Departure Function-Call Generator

• Signal-Based Function-Call Generator

• Stateflow blocks

2-5



2 Working with Events

• MATLAB Function blocks

Note The software does not support asynchronous function-calls in
discrete-event systems. It also does not support asynchronous function-calls
at discrete-event system boundaries (as identified by gateway blocks).

You can combine or manipulate function-call signals. To learn more, see
“Manipulating Events” on page 2-29.

2-6



Example: Event Calendar Usage for a Queue-Server Model

Example: Event Calendar Usage for a Queue-Server Model

In this section...

“Overview of Example” on page 2-7

“Start of Simulation” on page 2-8

“Generation of First Entity” on page 2-8

“Generation of Second Entity” on page 2-9

“Completion of Service Time” on page 2-10

“Generation of Third Entity” on page 2-11

“Generation of Fourth Entity” on page 2-12

“Completion of Service Time” on page 2-13

Overview of Example
To see how the event calendar drives the simulation of a simple event-based
model, consider the queue-server model depicted below.

Assume that the blocks are configured so that:

• The Time-Based Entity Generator block generates an entity at T = 0.9, 1.7,
3.8, 3.9, and 6.

2-7



2 Working with Events

• The queue has infinite capacity.

• The server uses service times of 1.3, 2.0, and 0.7 seconds for the first three
entities.

The sections below indicate how the event calendar and the system’s states
change during the simulation.

Start of Simulation
When the simulation starts, the queue and server are empty. The entity
generator schedules an event for T = 0.9. The event calendar looks like the
table below.

Time of
Event (s)

Type of Event

0.9 Time-Based Entity Generator block generates an entity.

Generation of First Entity
At T = 0.9,

• The entity generator generates an entity and attempts to output it.

• The queue is empty, so the entity advances from the entity generator to
the queue.

• The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. It queries the server to determine whether
the server can accept the entity.

• The server is empty, so the entity advances from the queue to the server.

• The server’s entity input port becomes temporarily unavailable to future
entities.

• The server schedules an event that indicates when the entity’s service time
is completed. The service time is 1.3 seconds, so service is complete at
T = 2.2.

• The entity generator schedules its next entity-generation event, at T = 1.7.

2-8



Example: Event Calendar Usage for a Queue-Server Model

In the schematic below, the circled notation “e1” depicts the first entity and
the dashed arrow is meant to indicate that this entity advances from the
entity generator through the queue to the server.

��

The event calendar looks like this.

Time of
Event (s)

Event Description

1.7 Time-Based Entity Generator block generates second entity.

2.2 Single Server block completes service on the first entity.

Generation of Second Entity
At T = 1.7,

• The entity generator generates an entity and attempts to output it.

• The queue is empty, so the entity advances from the entity generator to
the queue.

• The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. However, the server’s entity input port is
unavailable, so the entity stays in the queue. The queue’s entity output
port is said to be blocked because an entity has tried and failed to depart
via this port.

2-9



2 Working with Events

• The entity generator schedules its next entity-generation event, at T = 3.8.

�� ��

Time of
Event (s)

Event Description

2.2 Single Server block completes service on the first entity.

3.8 Time-Based Entity Generator block generates the third entity.

Completion of Service Time
At T = 2.2,

• The server finishes serving its entity and attempts to output it. The server
queries the next block to determine whether it can accept the entity.

• The sink block accepts all entities by definition, so the entity advances
from the server to the sink.

• The server’s entity input port becomes available. The server executes an
event to notify the queue about the newly available entity input port. This
event is called an entity request event.

• The queue is now able to output the second entity to the server. As a result,
the queue becomes empty and the server becomes busy again.

• The server’s entity input port becomes temporarily unavailable to future
entities.

2-10



Example: Event Calendar Usage for a Queue-Server Model

• The server schedules an event that indicates when the second entity’s
service time is completed. The service time is 2.0 seconds.

Note The server’s entity input port started this time instant in the
unavailable state, became available (when the first entity departed from the
server), and then became unavailable once again (when the second entity
arrived at the server). It is not uncommon for a state to change more than
once in the same time instant.

�� ��

Time of
Event (s)

Event Description

3.8 Time-Based Entity Generator block generates the third entity.

4.2 Single Server block completes service on the second entity.

Generation of Third Entity
At T = 3.8,

• The entity generator generates an entity and attempts to output it.

• The queue is empty, so the entity advances from the entity generator to
the queue.

2-11



2 Working with Events

• The newly generated entity is the only one in the queue, so the queue
attempts to output the entity. However, the server’s entity input port is
unavailable, so the entity stays in the queue.

• The entity generator schedules its next entity-generation event, at T = 3.9.

������

Time of
Event (s)

Event Description

3.9 Time-Based Entity Generator block generates the fourth
entity.

4.2 Single Server block completes service on the second entity.

Generation of Fourth Entity
At T = 3.9,

• The entity generator generates an entity and attempts to output it.

• The queue is not full, so the entity advances from the entity generator
to the queue.

• The server’s entity input port is still unavailable, so the queue cannot
output an entity. The queue length is currently two.

• The entity generator schedules its next entity-generation event, at T = 6.

2-12



Example: Event Calendar Usage for a Queue-Server Model

��������

Time of
Event (s)

Event Description

4.2 Single Server block completes service on the second entity.

6 Time-Based Entity Generator block generates the fifth entity.

Completion of Service Time
At T = 4.2,

• The server finishes serving its entity and attempts to output it.

• The sink block accepts all entities by definition, so the entity advances
from the server to the sink.

• The server’s entity input port becomes available, so it executes an entity
request event. The queue’s entity output port becomes unblocked. The
queue is now able to output the third entity to the server. As a result, the
queue length becomes one, and the server becomes busy.

• The server’s entity input port becomes temporarily unavailable to future
entities.

• The server schedules an event that indicates when the entity’s service time
is completed. The service time is 0.7 seconds.

2-13



2 Working with Events

• The queue attempts to output the fourth entity. However, the server’s
entity input port is unavailable, so this entity stays in the queue. The
queue’s entity output port becomes blocked.

Note The queue’s entity output port started this time instant in the blocked
state, became unblocked (when it sensed that the server’s entity input port
became available), and then became blocked once again (when the server
began serving the third entity).

��������

Time of
Event (s)

Event Description

4.9 Single Server block completes service on the third entity.

6 Time-Based Entity Generator block generates the fifth entity

2-14



Observing Events

Observing Events

In this section...

“Techniques for Observing Events” on page 2-15

“Example: Observing Service Completions” on page 2-19

“Example: Detecting Collisions by Comparing Events” on page 2-22

Techniques for Observing Events
The SimEvents debugger can help you observe events and the relative
sequencing of simultaneous events. For details, see “Overview of the
SimEvents Debugger” on page 13-3.

The next table describes some additional observation techniques. Each
technique focuses on a particular kind of event. These techniques indicate the
simulation time at which events occur but do not indicate relative sequencing
of simultaneous events. Key tools are the Instantaneous Event Counting
Scope block, Signal Scope block, and Discrete Event Signal to Workspace
block. You can also build a subsystem that counts events and creates a signal,
as illustrated in .

Event Observation Technique

Counter reset In the counter block #d output signal, observe falling
edges. Alternatively, use a branch line to connect the
input signal to an Instantaneous Event Counting Scope
block.

Delayed restart

Entity
advancement

In the block from which the entity departs, observe
increases in the #d output signal.

Entity
destruction

In the Entity Sink block, observe increases in the #a
output signal. The Instantaneous Entity Counting
Scope block provides a plot in place of a #a signal.

2-15



2 Working with Events

Event Observation Technique

Entity
generation

In the entity generator block, observe values of the pe
and #d output signals. Upon entity generation, you see
one of the following outcomes:

• The generated entity departs immediately. #d
increases and pe does not change.

• The generated entity cannot depart immediately. pe
increases.

To build a concrete example, adapt the technique
described in “Example: Observing Service Completions”
on page 2-19.

Entity request

Function call If the block issuing the function call provides a #f1
output signal, observe its increases. Otherwise,
configure a Signal-Based Function-Call Event Generator
block by enabling the #f1 output port and setting
Generate function call only upon to Function call
from port fcn. Insert the Signal-Based Function-Call
Event Generator block between the block issuing the
function call and the block reacting to the function call.

Gate (opening or
closing)

In the Enabled Gate block, use a branch line to connect
the en input signal to an Instantaneous Event Counting
Scope block. Rising trigger edges of the input signal
indicate gate-opening events, while falling trigger edges
of the input signal indicate gate-closing events.

Head of queue
push

Memory read In the Signal Latch block, observe sample time hits in
the out output signal.

Memory write In the Signal Latch block, observe sample time hits in
the mem output signal..

2-16



Observing Events

Event Observation Technique

Port selection If the block has a p input signal, use a branch line
to connect the p signal to an Instantaneous Event
Counting Scope block that is configured to plot value
changes. For the Input Switch or Output Switch block,
an alternative is to observe the last output signal.

Preemption In the server block, observe increases in the #p output
signal.

Release In the Release Gate block, use a branch line to connect
the input signal to an Instantaneous Event Counting
Scope block.

Sample time hit Use a branch line to connect the signal to an
Instantaneous Event Counting Scope block.

For Single Server blocks, observe values of the pe and
#d output signals. Upon service completion, you see one
of the following outcomes:

• The entity departs immediately. #d increases, and
pe does not change.

• The entity cannot depart immediately. pe increases.

To build a concrete example, adapt the technique
described in “Example: Observing Service Completions”
on page 2-19.

Service
completion

For Infinite Server and N-Server blocks, observe
values of the #pe and #d output signals. Upon service
completion, you see one of the following outcomes:

• The entity departs immediately. #d increases, and
#pe does not change.

• The entity cannot depart immediately. #pe increases.

For a concrete example, see “Example: Observing
Service Completions” on page 2-19.

2-17



2 Working with Events

Event Observation Technique

Storage
completion

In the switch block, observe values of the pe and #d
output signals. Upon storage completion, you see one
of the following outcomes:

• The entity departs immediately. #d increases, and
pe does not change.

• The entity cannot depart immediately. pe increases.

To build a concrete example, adapt the technique in
“Example: Observing Service Completions” on page
2-19.

Subsystem In any output signal from the subsystem, observe
sample time hits. Alternatively, connect a Discrete
Event Signal to Workspace block to any signal inside
the subsystem. Then observe the times at which the
variable in the workspace indicates a sample time hit
of the signal.

Timeout In the storage block from which the entity times out,
observe increases in the #to output signal.

Trigger Use a branch line to connect the signal to an
Instantaneous Event Counting Scope block.

Value change Use a branch line to connect the signal to an
Instantaneous Event Counting Scope block.

For examples that use one or more of these techniques, see:

• “Example: Plotting Event Counts to Check for Simultaneity” on page 10-15

• “Example: Observing Service Completions” on page 2-19

•

Also, “Example: Detecting Collisions by Comparing Events” on page 2-22
describes how to use a Signal Latch block to observe which of two types of
events are more recent.

2-18



Observing Events

Example: Observing Service Completions
The following example creates a stem plot showing when an N-Server block
completes service on each entity. The example also writes a signal, num_svc,
to the MATLAB workspace that indicates when each service completion
occurred.

Example Results
The example produces a plot in which each stem indicates a service
completion. The timing depends on the entity generation, service completion,
gate opening, and gate closing times in the model.

After the simulation is over, to form a vector of service completion times,
enter the following code:

2-19



2 Working with Events

t_svcp = num_svc.time

The output is:

t_svcp =

0
0.4542
0.9077
1.1218
1.3868
2.3430
2.3570
2.9251
2.9370
3.5592
4.3933
4.8554

The first value in the t_svcp vector represents the initial value of the #f1
signal. Subsequent values represent service completion times.

Computation Details
In the model, these blocks jointly determine when service completions
occurred:

• Discrete Event Subsystem

• Signal-Based Function-Call Generator

As inputs, the subsystem uses the #d and #pe output signals from the server
block.

Tip To adapt this technique to blocks that have a pe but not a #pe output
signal, use pe.

The subsystem executes when either #d or #pe increases because a service
completion has one of these consequences:

2-20



Observing Events

• The entity departs immediately. #d increases, while #pe does not change.

• The entity cannot depart immediately, so it becomes a pending entity. #pe
increases, while #d does not change.

Inside the subsystem is the MATLAB Function block. It contains this code:

function svc = svc_completion(d, pe_sig)

%#codegen

%SVC_COMPLETION Output 1 upon each service completion.

% SVC = SVC_COMPLETION(D, PE_SIG) outputs 1 if output signals from a

% server block indicate that a service completion occurred. The function

% outputs 0 otherwise. D is the #d output signal from a server block.

% PE_SIG is the #pe output signal from an N-Server or Infinite Server

% block, or the pe output signal from a Single Server block.

% Declare variables that must retain values between iterations.

persistent last_d last_pe_sig;

% Initialize persistent variables in the first iteration.

if isempty(last_d)

last_d = 0;

last_pe_sig = 0;

end

% Compute the output. A service completion occurred if either is true:

% * d increases and pe_sig remains the same.

% * pe_sig increases.

if ((d > last_d && isequal(pe_sig,last_pe_sig)) || (pe_sig > last_pe_sig))

svc = 1;

else

svc = 0;

end

% Update the persistent variables for the next iteration.

last_d = d;

last_pe_sig = pe_sig;

2-21



2 Working with Events

Note The subsystem does not execute upon decreases in #pe. A decrease
in #pe means that a pending entity has departed. The departure causes a
simultaneous increase in #d, but the block updates #pe before #d. Executing
the subsystem upon decreases in #pe would be incompatible with the
preceding code because #pe would reflect the departure but #d would not.

The output signal from the subsystem, svc, has a sample time hit of 1
whenever there is a service completion. The signal also has sample time
hits of 0 when the subsystem executes but there is no service completion. To
remove the sample time hits of 0, the example connects the svc signal to the
ts and e1 input ports of the Signal-Based Function-Call Generator block.
Each time a service completion occurs, the block:

• Generates a function call at the f1 output port

• Increases the value of the #f1 output signal

Example: Detecting Collisions by Comparing Events
The example below aims to determine whether an entity is the only entity in
an infinite server for the entire duration of service. The model uses the Signal
Latch block to compare the times of two kinds of events and report which kind
occurred more recently. This usage of the Signal Latch block relies on the
block’s status output signal, st, rather than the default in and out ports.

2-22



Observing Events

In the model, entities arrive at an infinite server, whose #n output signal
indicates how many entities are in the server. The Signal Latch block
responds to these signal-based events involving the integer-valued #n signal:

• If #n increases from 0 to a larger integer, then

- rtr has a rising edge.

- The Signal Latch block processes a read event.

- The Signal Latch block’s st output signal becomes 0.

• If #n increases from 1 to a larger integer, then

- wtr has a rising edge.

- The Signal Latch block processes a write event.

- The Signal Latch block’s st output signal becomes 1.

• If #n increases from 0 to 2 at the same value of the simulation clock, then it
also assumes the value 1 as a zero-duration value. As a result,

- rtr and wtr both have rising edges, in that sequence.

- The Signal Latch block processes a read event followed by a write event.

- The Signal Latch block’s st output signal becomes 1.

2-23



2 Working with Events

By the time the entity departs from the Infinite Server block, the Signal Latch
block’s st signal is 0 if and only if that entity has been the only entity in the
server block for the entire duration of service. This outcome is considered a
success for that entity. Other outcomes are considered collisions between that
entity and one or more other entities.

This example is similar to the CSMA/CD subsystem in the Ethernet Local
Area Network demo.

2-24



Generating Function-Call Events

Generating Function-Call Events

In this section...

“Role of Explicitly Generated Events” on page 2-25

“Generating Events When Other Events Occur” on page 2-25

“Generating Events Using Intergeneration Times” on page 2-27

Role of Explicitly Generated Events
You can generate an event and use it to

• Invoke a subsystem, MATLAB Function block, or Stateflow block

• Cause certain events, such as the opening of a gate or the reading of
memory in a Signal Latch block

• Generate an entity

For most purposes, a function call is an appropriate type of event to generate.

Note While you can invoke triggered subsystems,MATLAB Function blocks,
and Stateflow blocks upon trigger edges, trigger usage has limitations in
discrete-event simulations. In particular, you should use function calls
instead of triggers if you want the invocations to occur asynchronously, to be
prioritized among other simultaneous events, or to occur more than once in
a fixed time instant.

Generating Events When Other Events Occur
The table below indicates which blocks generate function calls when other
events occur.

2-25



2 Working with Events

Event Upon Which to
Generate Another Event

Block

Entity advancement Entity-Based Function-Call Event Generator

Signal-based event Signal-Based Function-Call Event Generator

Function call Signal-Based Function-Call Event Generator

Example: Calling a Stateflow Block Upon Changes in Server
Contents
The fragment below, which is part of an example in “Using Stateflow Charts
to Implement a Failure State” on page 5-20, uses entities to represent failures
and repairs of a server elsewhere in the model:

• A failure of the server is modeled as an entity’s arrival at the block labeled
Repair Work. When the Repair Work block’s #n signal increases to reflect
the entity arrival, the Signal-Based Function-Call Event Generator block
generates a function call that calls the Stateflow block to change the state
of the server from up to down.

• A completed repair of the server is modeled as an entity’s departure from
the Repair Work block. When the Repair Work block’s #n signal decreases
to reflect the entity departure, the Signal-Based Function-Call Event
Generator block generates a function call that calls the Stateflow block to
change the state of the server from down to up.

2-26



Generating Function-Call Events

One reason to use function calls rather than triggers to call a Stateflow block
in discrete-event simulations is that an event-based signal can experience
a trigger edge due to a zero-duration value that a time-based block would
not recognize. The Signal-Based Function-Call Event Generator can detect
signal-based events that involve zero-duration values.

Generating Events Using Intergeneration Times
To generate events using intergeneration times from a signal or a statistical
distribution, use this procedure:

1 Use the signal or statistical distribution with the Time-Based Entity
Generator block to generate entities.

2 Use the Entity-Based Function-Call Event Generator block to generate an
event associated with each entity.

3 Terminate the entity path with an Entity Sink block.

In the special case when the intergeneration time is constant, a simpler
alternative is to use the Function-Call Generator block in the Simulink Ports
& Subsystems library.

Example: Opening a Gate Upon Random Events
The example below uses the top entity generator to generate entities whose
sole purpose is to cause the generation of events with intergeneration times
from a statistical distribution. The bottom entity generator generates entities
that enter a gated queuing system.

2-27



2 Working with Events

2-28



Manipulating Events

Manipulating Events

In this section...

“Reasons to Manipulate Events” on page 2-29

“Blocks for Manipulating Events” on page 2-31

“Creating a Union of Multiple Events” on page 2-31

“Translating Events to Control the Processing Sequence” on page 2-33

“Conditionalizing Events” on page 2-35

Reasons to Manipulate Events
You can manipulate events to accomplish any of these goals:

• To invoke a function-call subsystem, MATLAB Function block, or Stateflow
block upon entity departures or signal-based events.

Note You can invoke triggered subsystems, MATLAB Function blocks,
and Stateflow blocks upon trigger edges, which are a type of signal-based
event. However, you will need to translate the trigger edges into function
calls if you want the invocations to occur asynchronously, to be prioritized
among other simultaneous events, or to occur more than once in a fixed
time instant.

• To create a union of events from multiple sources. See “Creating a Union
of Multiple Events” on page 2-31.

• To prioritize the reaction to one event relative to other simultaneous events.
See “Translating Events to Control the Processing Sequence” on page 2-33.

• To delay the reactions to events. See the Function-call time delay
parameter on the Signal-Based Function-Call Generator blocks reference
page.

• To conditionalize the reactions to events. See “Conditionalizing Events”
on page 2-35.

2-29



2 Working with Events

The term event translation refers to the conversion of one event into another.
The result of the translation is often a function call, but can be another type
of event. The result of the translation can occur at the same time as, or a
later time than, the original event.

2-30



Manipulating Events

Blocks for Manipulating Events
The table below lists blocks that are useful for manipulating events.

Event to
Manipulate

Block

Entity advancement Entity Departure Function-Call Generator Event

Signal-based event Signal-Based Function-Call Generator

Signal-Based Function-Call GeneratorFunction call

Mux

If you connect the Entity Departure Counter block’s #d output port to a block
that detects sample time hits or rising value changes, then you can view the
counter as a mechanism for converting an entity advancement event into a
signal-based event. Corresponding to each entity departure from the block is
an increase in the value of the #d signal.

Creating a Union of Multiple Events
To generate a function-call signal that represents the union (logical OR) of
multiple events, use this procedure:

1 Generate a function call for each event that is not already a function call.
Use blocks in the Event Generators or Event Translation library.

2 Use the Mux block to combine the function-call signals.

The multiplexed signal carries a function call when any of the individual
function-call signals carries a function call. If two individual signals carry a
function call at the same time instant, then the multiplexed signal carries two
function calls at that time instant.

Examples are in and below.

2-31



2 Working with Events

Example: Counting Events from Multiple Sources
The example below illustrates different approaches to event translation and
event generation. This example varies the approach for illustrative purposes;
in your own models, you might decide to use a single approach that you find
most intuitive.

The goal of the example is to plot the number of arrivals at a bank of three
servers at each value of time. Entities advance to the servers via one or
two FIFO Queue blocks. To count arrivals and create the plot, the model
translates each arrival at a server into a function call; the Mux block combines
the three function-call signals to create an input to the Instantaneous Event
Counting Scope block.

The three server paths use these methods for translating an entity arrival
into a function call:

• One path uses the Entity Departure Function-Call Generator block,
treating the problem as one of event translation.

• One path uses the Entity-Based Event Generator block, treating the
problem as one of event generation. This is similar to the approach above.

• One path uses the Signal-Based Function-Call Generator block to translate
an increase in the value of the server block’s #n signal into a function call.
This approach uses the fact that each arrival at the server block causes a
simultaneous increase in the block’s #n signal.

2-32



Manipulating Events

Translating Events to Control the Processing Sequence
In some situations, event translation blocks can help you prescribe the
processing sequence for simultaneous events. The examples below illustrate
how to do this by taking advantage of the sequence in which an event

2-33



2 Working with Events

translation block issues two function calls, and by converting an unprioritized
function call into a function call having an event priority.

Example: Issuing Two Function Calls in Sequence
In the next model, entity generation and the execution of a function-call
subsystem can occur simultaneously. At such times, it is important that
the entity generation occur first, so that the entity generator updates the
value of the w signal before the function-call subsystem uses w in its
computation. This model ensures a correct processing sequence by using the
same Signal-Based Function-Call Generator block to issue both function calls
and by relying on the fact that the block always issues the f1 function call
before the f2 function call.

In this example, the Signal-Based Function-Call Generator block has this
configuration:

• Generate function call only upon = Function call from port fcn

• Generate optional f2 function call selected

In this example, the Function-Call Split block in the Simulink libraries is not
an alternative because it cannot connect to SimEvents blocks.

Example: Generating a Function Call with an Event Priority
The next model uses an event translation block to prioritize the execution
of a function-call subsystem correctly on the event calendar, relative to a
simultaneous event. In the model, a Stateflow block and an entity generator
respond to edges of the same trigger signal. The Stateflow block calls an
event translation block, which in turn calls a function-call subsystem. The

2-34



Manipulating Events

subsystem performs a computation using the w output signal from the entity
generator.

As in the earlier example, it is important that the entity generator update
the value of the w signal before the function-call subsystem uses w in its
computation. To ensure a correct processing sequence, the Signal-Based
Function-Call Generator block replaces the original function call, which is not
scheduled on the event calendar, with a new function call that is scheduled on
the event calendar with a priority of 200. The Event-Based Entity Generator
block schedules an entity-generation event on the event calendar with a
priority of 100. As a result of the event translation and the relative event
priorities, the entity generator generates the entity before the event translator
issues the function call to the function-call subsystem whenever these events
occur at the same value (or sufficiently close values) of the simulation clock.

Conditionalizing Events
The Entity Departure Function-Call Generator Event and Signal-Based
Function-Call Generator blocks provide a way to suppress the output function
call based on a control signal. If the control signal is zero or negative when
the block is about to issue the function call, then the block suppresses the
function call. You can use this feature to

• Prevent simulation problems. The example in “Example: Detecting
Changes in the Last-Updated Signal” on page 14-43 uses conditional
function calls to prevent division-by-zero warnings.

• Model an inoperative state of a component of your system. See the next
example.

2-35



2 Working with Events

Example: Modeling Periodic Shutdown of an Entity Generator
The example below uses Event-Based Entity Generator blocks to generate
entities when a pulse signal changes its value. The top entity generator
generates an entity upon each such event. The bottom entity generator
responds to a function call issued by an event translation block that detects
changes in the pulse signal’s value. However, the event translation block
issues a function call only upon value changes that occur while the e1
input signal is positive. In this model, a nonpositive value of the e1 signal
corresponds to a failure or resting period of the entity generator.

2-36



3

Managing Simultaneous
Events

• “Overview of Simultaneous Events” on page 3-2

• “Exploring Simultaneous Events” on page 3-4

• “Choosing an Approach for Simultaneous Events” on page 3-7

• “Assigning Event Priorities” on page 3-8

• “Example: Choices of Values for Event Priorities” on page 3-11

• “Example: Effects of Specifying Event Priorities” on page 3-26



3 Managing Simultaneous Events

Overview of Simultaneous Events
During a simulation, multiple events can occur at the same value of the
simulation clock, whether or not due to causality. Also, the application treats
events as simultaneous if their event times are sufficiently close, even if the
event times are not identical. Events scheduled on the event calendar for
times T and T+Δt are considered simultaneous if 0 ≤ Δt ≤ 128*eps*T, where
eps is the floating-point relative accuracy in MATLAB software and T is
the simulation time.

This table indicates sources of relevant information that can help you
understand and manage simultaneous events.

To Read
About...

Refer to... Description

Background “Supported Events in SimEvents
Models” on page 2-2

Overview of event types and the
event calendar

Behavior “Event Sequencing” on page 14-9 How the application determines
which events to process first, when
time and causality alone do not
specify a unique sequence

“Example: Event Calendar Usage for
a Queue-Server Model” on page 2-7

Illustrates basic functionality of the
event calendar

“Example: Choices of Values for
Event Priorities” on page 3-11

Examines the role of event priority
values

Examples

“Example: Effects of Specifying
Event Priorities” on page 3-26

Compares simulation behaviors
when you specify and do not specify
event priorities

Tips “Choosing an Approach for
Simultaneous Events” on page
3-7 and “Tips for Choosing Event
Priority Values” on page 3-8

Tips to help you decide how to
configure your model

Techniques “Exploring Simultaneous Events”
on page 3-4 and “Assigning Event
Priorities” on page 3-8

Viewing behavior and working with
explicit event priorities

3-2



Overview of Simultaneous Events

When one of the simultaneous events is a signal update, information in
“Choosing How to Resolve Simultaneous Signal Updates” on page 14-14
is also relevant.

3-3



3 Managing Simultaneous Events

Exploring Simultaneous Events

In this section...

“Using Nearby Breakpoints to Focus on a Particular Time” on page 3-5

“For Further Information” on page 3-5

One way that you can see details about which events occur simultaneously
and the sequence in which the application processes them is by running the
simulation with the SimEvents debugger. The debugger displays messages
in the Command Window to indicate what is happening in the simulation,
and lets you inspect states at any point where the debugger suspends the
simulation. You might still need to infer some aspects of the simulation
behavior that do not appear in the Command Window messages.

Tips for how you can use the debugger to explore simultaneous events, where
the commands mentioned are valid at the sedebug>> prompt of the debugger,
are:

• If you want to view the event calendar at any point in the simulation,
enter evcal.

• If all the events you want to explore are on the event calendar and you are
not interested in entity operations, enter detail('en',0). The simulation
log no longer issues messages about entity operations and the step function
ignores entity operations.

The opposite command is detail('en',1), which causes the simulation
log to include messages about entity operations and makes it possible for
step to suspend the simulation at an entity operation.

• If you want to see everything that happens at a particular time, use a
pair of timed breakpoints, as in “Using Nearby Breakpoints to Focus on a
Particular Time” on page 3-5.

• If you want to proceed in the simulation until it executes or cancels a
particular event that is on the event calendar, find the event identifier
(using evcal or the simulation log), use the event identifier in an evbreak
command, and then enter cont.

• An event breakpoint is not the same as a timed breakpoint whose value
equals the scheduled time of the event. The two breakpoints can cause

3-4



Exploring Simultaneous Events

the simulation to stop at different points if the execution or cancelation of
the event is not the first thing that happens at that value of time. For an
example, see the sedb.evbreak reference page.

• The simulation log indicates the sequence of simultaneous events, but you
might still have questions about why events are in that sequence. Referring
to earlier messages in the simulation log might help answer your questions.
If not, you might need to run the simulation again and inspect states at
earlier points in the simulation. Debugging is often an iterative process.

Using Nearby Breakpoints to Focus on a Particular
Time

1 Create a timed breakpoint at the time that you are interested in. For
example, if you are interested in what happens at T=3, at the sedebug>>
prompt, enter this command:

tbreak(3)

2 Enter cont to reach the breakpoint from step 1.

If the time that you specified in step 1 is an earlier approximation of the
actual time at which something interesting happens, the simulation might
stop at a time later than the time of the breakpoint. For example, suppose
you guess T=3 from looking at a plot, but the actions of interest really
occur at T=3.0129. In this case, having the simulation stop at T=3.0129 is
desirable if nothing happens in the simulation at exactly T=3.

3 Create a timed breakpoint shortly after the current simulation time, by
entering:

tbreak(simtime + 128*eps*simtime)

4 Enter cont to reach the next breakpoint. The portion of the simulation log
between the last two cont commands contains the items of interest.

For Further Information

• “Overview of the SimEvents Debugger” on page 13-3 — More information
about the debugger

3-5



3 Managing Simultaneous Events

• “Example: Choices of Values for Event Priorities” on page 3-11 — An
example that explores simultaneous events and illustrates interpreting
the debugger simulation log

3-6



Choosing an Approach for Simultaneous Events

Choosing an Approach for Simultaneous Events
When your simulation involves simultaneous events whose causality
relationships do not determine a unique correct processing sequence, you
might have a choice regarding their processing sequence. These tips can
help you make appropriate choices:

• Several blocks offer a Resolve simultaneous signal updates according
to event priority option. The default value, which depends on the block,
is appropriate in most simulation contexts. Consider using the default
value unless you have a specific reason to change it.

• If you need explicit control over the sequencing of specific kinds of
simultaneous events, assign numerical event priorities for events that you
want to defer until after other events are processed. For procedures and
tips related to numerical event priorities, see “Assigning Event Priorities”
on page 3-8.

• In some debugging situations, it is useful to see whether the simulation
behavior changes when you either change the value of a block’s Resolve
simultaneous signal updates according to event priority option or
use an extreme value for an event priority. Experiments like this can help
you determine which events might be sensitive to changes in the processing
sequence. The debugger can also help you detect sensitivities.

For details on how the application treats simultaneous events, see “Processing
Sequence for Simultaneous Events” on page 14-9 and “Resolution Sequence
for Input Signals” on page 14-15.

3-7



3 Managing Simultaneous Events

Assigning Event Priorities

In this section...

“Procedure for Assigning Event Priorities” on page 3-8

“Tips for Choosing Event Priority Values” on page 3-8

“Procedure for Specifying Equal-Priority Behavior” on page 3-9

Procedure for Assigning Event Priorities
To assign a numerical event priority to an event, use this procedure:

1 Find the block that produces the event you want to prioritize. For example,
it might be an entity generator, a server, a gate, a counter, or a switch.

2 If the block’s dialog box has an option called Resolve simultaneous
signal updates according to event priority, select this option. A
parameter representing the event priority appears; in most blocks, the
parameter’s name is Event priority.

3 Set the event priority parameter to a positive integer.

Note Some events have event priorities that are not numerical, such
as SYS1 and SYS2. For more information about these priority values,
see “System-Priority Events on the Event Calendar” on page 14-20 and
“Processing Sequence for Simultaneous Events” on page 14-9.

Tips for Choosing Event Priority Values
Suppose you want to assign a numerical event priority value for Event X
to defer its processing until after some simultaneous Event Y has been
processed. A particular value for the event priority is not significant in

3-8



Assigning Event Priorities

isolation; what matters is the relative handling of simultaneous events. Keep
these tips in mind when choosing a value for the event priority:

• If Event Y does not have a numerical event priority, then any value for
the event priority of Event X causes Event X to be processed later. (See
“Processing Sequence for Simultaneous Events” on page 14-9 for details.)

• If Event Y has a numerical event priority, then choosing a larger value
for the event priority of Event X causes Event X to be processed later.
Simultaneous events having distinct numerical event priorities are
processed in ascending order of the event priority values.

• Leaving gaps in the set of numerical values you choose lets you include
additional events that require intermediate-value priorities. For example,
if Event Y has priority 1 and Event X has priority 2, then you cannot force
an Event Z to be processed after Event Y and before Event X. On the other
hand, priority values of 100 and 200 would better accommodate future
growth of your model.

For examples that show the effect of changing event priorities, see “Example:
Choices of Values for Event Priorities” on page 3-11 and the Event Priorities
demo.

Procedure for Specifying Equal-Priority Behavior
If simultaneous events on the event calendar share the same numerical
value for their event priorities, then the application arbitrarily or randomly
determines the processing sequence, depending on a modelwide configuration
parameter. To set this parameter, use this procedure:

1 Select Simulation > Configuration Parameters from the model
window. This opens the Configuration Parameters dialog box.

2 In the left pane, select SimEvents.

3 In the right pane, set Execution order to either Randomized or Arbitrary.

• If you select Arbitrary, the application uses an internal algorithm to
determine the processing sequence for events on the event calendar that
have the same event priority and sufficiently close event times.

3-9



3 Managing Simultaneous Events

• If you select Randomized, the application randomly determines the
processing sequence. All possible sequences have equal probability. The
Seed for event randomization parameter is the initial seed of the
random number generator; for a given seed, the generator’s output is
repeatable.

The processing sequence might be different from the sequence in which the
events were scheduled on the event calendar.

3-10



Example: Choices of Values for Event Priorities

Example: Choices of Values for Event Priorities

In this section...

“Overview of Example” on page 3-11

“Arbitrary Resolution of Signal Updates” on page 3-12

“Selecting a Port First” on page 3-12

“Generating Entities First” on page 3-19

“Randomly Selecting a Sequence” on page 3-24

Overview of Example
This example shows how you can vary the processing sequence for
simultaneous events by varying their event priorities. The example creates
race conditions at a switch and illustrates multiple ways to resolve the race
conditions.

3-11



3 Managing Simultaneous Events

At T=1, 2, 3,... the Repeating Sequence Stair block changes its value from
1 to 2 or from 2 to 1. The change causes the following events to occur, not
necessarily in this sequence:

• The top entity generator generates an entity.

• The bottom entity generator generates an entity.

• The Input Switch block selects a different entity input port.

Both entity generators are configured so that if a generated entity cannot
depart immediately, the generator holds the entity and temporarily suspends
the generation of additional entities.

In the model, the two Set Attribute blocks assign a Source attribute to each
entity. The attribute value is 1 or 2 depending on which entity generator
generated the entity. The Attribute Scope block plots the Source attribute
values to indicate the source of each entity that departs from the switch.

Arbitrary Resolution of Signal Updates
If the two entity generators and the switch all have the Resolve
simultaneous signal updates according to event priority option turned
off, then you cannot necessarily predict the sequence in which the blocks
schedule their reactions to changes in the output signal from the Repeating
Sequence Stair block.

The rest of this example assumes that the two entity generators and the
switch all use the Resolve simultaneous signal updates according
to event priority option, for greater control over the sequencing of
simultaneous events.

Selecting a Port First
Suppose the two entity generators and the switch have the explicit event
priorities shown.

3-12



Example: Choices of Values for Event Priorities

Event Type Event Priority

Generation event at top entity generator 300

Generation event at bottom entity generator 310

Port selection event at switch 200

The following describes what happens at T=1, 2, 3 using messages from the
simulation log of the SimEvents debugger. To learn more about the debugger,
see “Overview of the SimEvents Debugger” on page 13-3.

Behavior at T=1

• The output signal from the Repeating Sequence Stair block changes from 1
to 2 and blocks that connect to it detect the relevant update.

%==============================================================================%

Detected Sample Time Hit Time = 1.000000000000000

: Block = Input Switch

• The blocks that react to the update then schedule events on the event
calendar.

%------------------------------------------------------------------------------%

Discrete-Event System ID: 0 Highlight

ID EventTime EventType Priority Entity Block

=> ev6 1.000000000000000 PortSelection 200 <none> Input Switch

ev4 1.000000000000000 EntityGeneration 300 <none> Event-Based

Entity Generator1

ev5 1.000000000000000 EntityGeneration 310 <none> Event-Based

Entity Generator2

• The switch selects its IN2 entity input port.

%==============================================================================%

Executing PortSelection Event (ev6) Time = 1.000000000000000

: Entity = <none> Priority = 200

: Block = Input Switch

• The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

3-13



3 Managing Simultaneous Events

%==============================================================================%

Executing EntityGeneration Event (ev4) Time = 1.000000000000000

: Entity = <none> Priority = 300

: Block = Event-Based Entity Generator1

%..........................................................................%

Generating Entity (en1)

: Block = Event-Based Entity Generator1

• The bottom entity generator generates an entity. This entity advances from
block to block until it reaches the Attribute Scope block, which destroys it.

%==============================================================================%

Executing EntityGeneration Event (ev5) Time = 1.000000000000000

: Entity = <none> Priority = 310

: Block = Event-Based Entity Generator2

%..........................................................................%

Generating Entity (en2)

: Block = Event-Based Entity Generator2

%..........................................................................%

Entity Advancing (en2)

: From = Event-Based Entity Generator2

: To = Set Attribute2

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en2)

: From = Get Attribute

: To = Attribute Scope

%..........................................................................%

Destroying Entity (en2)

: Block = Attribute Scope

Behavior at T=2

• Blocks detect the next relevant update in the output signal from the
Repeating Sequence Stair block, and react by scheduling events.

%------------------------------------------------------------------------------%

Discrete-Event System ID: 0 Highlight

3-14



Example: Choices of Values for Event Priorities

ID EventTime EventType Priority Entity Block

=> ev10 2.000000000000000 PortSelection 200 <none> Input Switch

ev8 2.000000000000000 EntityGeneration 300 <none> Event-Based

Entity Generator1

ev9 2.000000000000000 EntityGeneration 310 <none> Event-Based

Entity Generator2

• The switch selects its IN1 entity input port. This causes the top entity
generator to output the entity it generated 1 second ago. This entity
advances from block to block until it reaches the Attribute Scope block.

%==============================================================================%

Executing PortSelection Event (ev10) Time = 2.000000000000000

: Entity = <none> Priority = 200

: Block = Input Switch

%..........................................................................%

Entity Advancing (en1)

: From = Event-Based Entity Generator1

: To = Set Attribute1

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en1)

: From = Get Attribute

: To = Attribute Scope

%..........................................................................%

Destroying Entity (en1)

: Block = Attribute Scope

• The top entity generator generates an entity, which advances from block to
block until it reaches the Attribute Scope block. A total of two entities from
the top entity generator reach the scope at this time instant.

%==============================================================================%

Executing EntityGeneration Event (ev8) Time = 2.000000000000000

: Entity = <none> Priority = 300

: Block = Event-Based Entity Generator1

%..........................................................................%

Generating Entity (en3)

: Block = Event-Based Entity Generator1

%..........................................................................%

3-15



3 Managing Simultaneous Events

Entity Advancing (en3)

: From = Event-Based Entity Generator1

: To = Set Attribute1

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en3)

: From = Get Attribute

: To = Attribute Scope

%..........................................................................%

Destroying Entity (en3)

: Block = Attribute Scopee

• The bottom entity generator generates an entity, which cannot depart
because the switch’s IN2 entity input port is unavailable.

%==============================================================================%

Executing EntityGeneration Event (ev9) Time = 2.000000000000000

: Entity = <none> Priority = 310

: Block = Event-Based Entity Generator2

%..........................................................................%

Generating Entity (en4)

: Block = Event-Based Entity Generator2

Behavior at T=3

• Blocks detect the next relevant update in the output signal from the
Repeating Sequence Stair block, and react by scheduling events.

%------------------------------------------------------------------------------%

Discrete-Event System ID: 0 Highlight

ID EventTime EventType Priority Entity Block

=> ev15 3.000000000000000 PortSelection 200 <none> Input Switch

ev13 3.000000000000000 EntityGeneration 300 <none> Event-Based

Entity Generator1

ev14 3.000000000000000 EntityGeneration 310 <none> Event-Base

• The switch selects its IN2 entity input port. This causes the bottom entity
generator to output the entity it generated 1 second ago. This entity
advances from block to block until it reaches the Attribute Scope block.

3-16



Example: Choices of Values for Event Priorities

%==============================================================================%

Executing PortSelection Event (ev15) Time = 3.000000000000000

: Entity = <none> Priority = 200

: Block = Input Switch

%..........................................................................%

Entity Advancing (en4)

: From = Event-Based Entity Generator2

: To = Set Attribute2

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en4)

: From = Get Attribute

: To = Attribute Scope

%..........................................................................%

Destroying Entity (en4)

: Block = Attribute Scope

• The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

%==============================================================================%

Executing EntityGeneration Event (ev13) Time = 3.000000000000000

: Entity = <none> Priority = 300

: Block = Event-Based Entity Generator1

%..........................................................................%

Generating Entity (en5)

: Block = Event-Based Entity Generator1

• The bottom entity generator generates an entity, which advances from block
to block until it reaches the Attribute Scope block. A total of two entities
from the bottom entity generator reach the scope at this time instant.

%==============================================================================%

Executing EntityGeneration Event (ev14) Time = 3.000000000000000

: Entity = <none> Priority = 310

: Block = Event-Based Entity Generator2

%..........................................................................%

Generating Entity (en6)

: Block = Event-Based Entity Generator2

3-17



3 Managing Simultaneous Events

%..........................................................................%

Entity Advancing (en6)

: From = Event-Based Entity Generator2

: To = Set Attribute2

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en6)

: From = Get Attribute

: To = Attribute Scope

%..........................................................................%

Destroying Entity (en6)

: Block = Attribute Scope

Evidence from Plots and Signals
The plot of entities’ Source attribute values shows an alternating pattern of
dots, as does the plot of the port selection signal p. The list of times and
values of the entities’ Source attribute, as recorded in the Source_attr
variable in the MATLAB workspace, shows that two entities from the same
entity generator reach the scope at T=2, 3, 4, etc.

Port Selection Signal

Switch Departures When Port Selection Is Processed First

[Source_attr.time, Source_attr.signals.values]

3-18



Example: Choices of Values for Event Priorities

ans =

0 0
1 2
2 1
2 1
3 2
3 2
4 1
4 1
5 2
5 2
6 1
6 1
7 2
7 2
8 1
8 1
9 2
9 2

10 1
10 1

Generating Entities First
Suppose the two entity generators and the switch have the explicit event
priorities shown below.

Event Type Event Priority

Generation event at top entity generator 300

Generation event at bottom entity generator 310

Port selection event at switch 4000

At the beginning of the simulation, the port selection signal, p, is 1.

3-19



3 Managing Simultaneous Events

Behavior at T=1

• The output signal from the Repeating Sequence Stair block changes from 1
to 2 and blocks that connect to it detect the relevant update.

%==============================================================================%

Detected Sample Time Hit Time = 1.000000000000000

: Block = Input Switch

• The blocks that react to the update then schedule events on the event
calendar.

%------------------------------------------------------------------------------%

Discrete-Event System ID: 0 Highlight

ID EventTime EventType Priority Entity Block

=> ev4 1.000000000000000 EntityGeneration 300 <none> Event-Based

Entity Generator1

ev5 1.000000000000000 EntityGeneration 310 <none> Event-Based

Entity Generator2

ev6 1.000000000000000 PortSelection 4000 <none> Input Switch

• The top entity generator generates an entity. This entity advances from
block to block until it reaches the Attribute Scope block, which destroys it.

%==============================================================================%

Executing EntityGeneration Event (ev4) Time = 1.000000000000000

: Entity = <none> Priority = 300

: Block = Event-Based Entity Generator1

%..........................................................................%

Generating Entity (en1)

: Block = Event-Based Entity Generator1

%..........................................................................%

Entity Advancing (en1)

: From = Event-Based Entity Generator1

: To = Set Attribute1

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en1)

: From = Get Attribute

: To = Attribute Scope

3-20



Example: Choices of Values for Event Priorities

• The bottom entity generator generates an entity, which cannot depart
because the switch’s IN2 entity input port is unavailable.

%==============================================================================%

Executing EntityGeneration Event (ev5) Time = 1.000000000000000

: Entity = <none> Priority = 310

: Block = Event-Based Entity Generator2

%..........................................................................%

Generating Entity (en2)

: Block = Event-Based Entity Generator2

• The switch selects its IN2 entity input port. This causes the bottom entity
generator to output the entity it just generated. This entity advances from
block to block until it reaches the Attribute Scope block.

%==============================================================================%

Executing PortSelection Event (ev3) Time = 0.000000000000000

: Entity = <none> Priority = 4000

: Block = Input Switch2

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en1)

: From = Get Attribute

: To = Attribute Scope

Behavior at T=2

• Blocks detect the next relevant update in the output signal from the
Repeating Sequence Stair block, and react by scheduling events.

%------------------------------------------------------------------------------%

Discrete-Event System ID: 0 Highlight

ID EventTime EventType Priority Entity Block

=> ev9 2.000000000000000 EntityGeneration 300 <none> Event-Based

Entity Generator1

ev10 2.000000000000000 EntityGeneration 310 <none> Event-Based

Entity Generator2

3-21



3 Managing Simultaneous Events

ev11 2.000000000000000 PortSelection 4000 <none> Input Switch

• The top entity generator generates an entity, which cannot depart because
the switch’s IN1 entity input port is unavailable.

%==============================================================================%

Executing EntityGeneration Event (ev9) Time = 2.000000000000000

: Entity = <none> Priority = 300

: Block = Event-Based Entity Generator1

%..........................................................................%

Generating Entity (en3)

: Block = Event-Based Entity Generator1

• The bottom entity generator generates an entity, which advances from
block to block until it reaches the Attribute Scope block.

%==============================================================================%

Executing EntityGeneration Event (ev10) Time = 2.000000000000000

: Entity = <none> Priority = 310

: Block = Event-Based Entity Generator2

%..........................................................................%

Generating Entity (en4)

: Block = Event-Based Entity Generator2

%..........................................................................%

Entity Advancing (en4)

: From = Event-Based Entity Generator2

: To = Set Attribute2

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en4)

: From = Get Attribute

: To = Attribute Scope

• The switch selects its IN1 entity input port. This causes the top entity
generator to output the entity it just generated. This entity advances from
block to block until it reaches the Attribute Scope block.

%==============================================================================%

Executing PortSelection Event (ev11) Time = 2.000000000000000

: Entity = <none> Priority = 4000

3-22



Example: Choices of Values for Event Priorities

: Block = Input Switch

%..........................................................................%

[...other messages...]

%..........................................................................%

Entity Advancing (en5)

: From = Get Attribute

: To = Attribute Scope

Plots and Signals
The plot of entities’ Source attribute values shows that two entities from
different entity generators depart from the switch every second.

Switch Departures When Entity Generations Are Processed First

[Source_attr.time, Source_attr.signals.values]

ans =

1 1
1 2
2 2
2 1
3 1
3 2
4 2
4 1
5 1
5 2
6 2
6 1
7 1
7 2

3-23



3 Managing Simultaneous Events

8 2
8 1
9 1
9 2

10 2
10 1

Randomly Selecting a Sequence
Suppose the two entity generators and the switch have equal event priorities.
By default, the application uses an arbitrary processing sequence for the
entity-generation events and the port-selection events, which might or might
not be appropriate in an application. To avoid bias by randomly determining
the processing sequence for these events, set Execution order to Randomized
in the model’s Configuration Parameters dialog box.

Sample attribute values and the corresponding plot are below, but your
results might vary depending on the specific random numbers.

Switch Departures When Processing Sequence is Random

[Source_attr.time, Source_attr.signals.values]

ans =

1 2
2 2
2 1
3 2
4 1
4 1
5 1
5 2
5 2
6 1

3-24



Example: Choices of Values for Event Priorities

7 1
7 2
8 2
8 1
9 2

10 1
10 1

3-25



3 Managing Simultaneous Events

Example: Effects of Specifying Event Priorities

In this section...

“Overview of the Example” on page 3-26

“Default Behavior” on page 3-27

“Deferring Gate Events” on page 3-28

Overview of the Example
This example illustrates how selecting or clearing the Resolve simultaneous
signal updates according to event priority option—which influences
whether or how an event is scheduled on the event calendar—can significantly
affect simulation behavior. In particular, the example illustrates how
deferring the reaction to a signal update can change how a gate lets entities
out of a queue.

In this model , the Atomic Subsystem block (Compare to 5) returns 1 when
the queue length is greater than or equal to 5, and returns 0 otherwise. When
the subsystem returns 1, the gate opens to let one or more entities depart
from the queue.

The number of entities departing from the queue at a given time depends on
the Resolve simultaneous signal updates according to event priority
parameter settings in the Enabled Gate block, as explained in the next section.

3-26



Example: Effects of Specifying Event Priorities

Default Behavior
By default, the Enabled Gate block at the top level has the Resolve
simultaneous signal updates according to event priority option not
selected. This block does not have any events with numerical priority values.
The simulation behaves as follows:

Simulation Behavior

1 The queue accumulates entities until it updates the queue length signal,
#n, to 5.

2 The subsystem executes immediately because the execution is not
scheduled on the event calendar. The subsystem reports, and the gate
detects, that the queue length is at the threshold.

3 The gate schedules an event to open. The event has priority SYS1.

Note Some events have event priorities that are not numerical, such
as SYS1 and SYS2. For more information about these priority values,
see “System-Priority Events on the Event Calendar” on page 14-20 and
“Processing Sequence for Simultaneous Events” on page 14-9.

4 The application executes the event, and the gate opens.

5 One entity departs from the queue.

6 The gate schedules an event to request another entity. The event has
priority SYS2.

7 The queue length decreases.

8 As a consequence of the queue length’s decrease, the subsystem executes
immediately because the execution is not scheduled on the event calendar.
The subsystem finds that the queue length is beneath the threshold.

9 The gate schedules an event to close. The event has priority SYS1.

3-27



3 Managing Simultaneous Events

10 The application executes the gate event. (Note that the application
processes events with priority SYS1 before processing events with priority
SYS2.) The gate closes.

11 The application executes the entity request event, but it has no effect
because the gate is already closed.

12 Time advances until the next entity generation, at which point the cycle
repeats.

In summary, when the queue length reaches the threshold, the gate permits
exactly one entity to advance and then closes. This is because the subsystem
reevaluates the threshold condition upon detecting the change in #n, and the
gate’s closing event has higher priority than its entity request event. The
plots of departures from the gates reflect this behavior.

The rest of this example modifies the model to permit the queue to empty
completely. The strategies are either to defer the reevaluation of the threshold
condition or to defer the gate’s reaction to the reevaluated threshold condition.

Deferring Gate Events
To illustrate how specifying a numerical event priority for the gate can defer
its closing until more entities have advanced, open the original model and
modify it as follows:

Procedure

1 Open the Enabled Gate block’s dialog box by double-clicking the block.

2 Select Resolve simultaneous signal updates according to event
priority.

3-28



Example: Effects of Specifying Event Priorities

The change causes the gate to prioritize its events differently. The application
processes events with priority SYS1 before processing events with numerical
priority values. As a result, the simulation behaves as follows:

Simulation Behavior

1 The queue accumulates entities until it updates the queue length signal,
#n, to 5.

2 The subsystem executes immediately because the execution is not
scheduled on the event calendar. The subsystem finds that the queue
length is at the threshold.

3 The gate schedules an event to open. The event has a numerical priority
value.

4 The application executes the event, and the gate opens.

5 One entity departs from the queue.

6 The gate schedules an event to request another entity. The event has
priority SYS2.

7 The queue length decreases.

8 As a consequence of the queue length’s decrease, the subsystem executes
immediately because the execution is not scheduled on the event calendar.
The subsystem finds that the queue length is beneath the threshold.

9 The gate schedules an event to close. The event has a numerical priority
value.

10 The application executes the entity request event.

11 Steps 5 through 10 repeat until the queue is empty. The gate remains
open during this period. This repetition shows the difference in simulation
behavior between SYS1 and a numerical value as the event priority for
the gate event.

12 The application executes the gate event. The gate closes.

3-29



3 Managing Simultaneous Events

13 Time advances until the next entity generation, at which point the queue
begins accumulating entities again.

In summary, when the queue length reaches the threshold, the gate permits
the queue to become empty. This is because the gate does not react to the
reevaluated threshold condition until after other simultaneous operations
have been processed. The plot of departures from the gates reflect this
behavior.

3-30



4

Working with Signals

• “Role of Event-Based Signals in SimEvents Models” on page 4-2

• “Generating Random Signals” on page 4-4

• “Using Data Sets to Create Event-Based Signals” on page 4-7

• “Converting Between Time-Based and Event-Based Signals” on page 4-10

• “Manipulating Signals” on page 4-14

• “Sending Data to the MATLAB Workspace” on page 4-17

• “Working with Multivalued Signals” on page 4-20



4 Working with Signals

Role of Event-Based Signals in SimEvents Models

In this section...

“Overview of Event-Based Signals” on page 4-2

“Comparison with Time-Based Signals” on page 4-2

“Tips for Using Event-Based Signals” on page 4-3

“Signal Restrictions for Event-Based Signals” on page 4-3

Overview of Event-Based Signals
Discrete-event simulations often involve signals that change when events
occur; for example, the number of entities in a server is a statistical output
signal from a server block and the signal value changes when an entity
arrives at or departs from the server. An event-based signal is a signal that
can change in response to discrete events. A discrete-event system is one in
which signals change when events occur. One model can have one or more
discrete-event systems.

Most output signals from SimEvents blocks are event-based signals.
Exceptions are the output signals from the Event to Timed Signal and
Event to Timed Function-Call blocks, whose explicit purpose is to convert
event-based signals into time-based signals.

Comparison with Time-Based Signals
Unlike time-based signals, event-based signals:

• Do not have a true sample time.

• Might be updated at time instants that do not correspond to time steps
determined by time-based dynamics.

• Might undergo multiple updates in a single time instant.

For example, consider a signal representing the number of entities in a server.
Computing this value at fixed intervals is wasteful if no entities arrive or
depart for long periods. Computing the value at fixed intervals is inaccurate if
entities arrive or depart in the middle of an interval, because the computation

4-2



Role of Event-Based Signals in SimEvents® Models

misses those events. Simultaneous events can make the signal multivalued;
for example, if an entity completes its service and departs, which permits
another entity to arrive at the same time instant, then the count at that time
equals both 0 and 1 at that time instant. Furthermore, if an updated value
of the count signal causes an event, then the processing of the signal update
relative to other operations at that time instant can affect the processing
sequence of simultaneous events and change the behavior of the simulation.

When you use output signals from SimEvents blocks to examine the detailed
behavior of your system, you should understand when the blocks update the
signals, including the possibility of multiple simultaneous updates. When
you use event-based signals for controlling the dynamics of the simulation,
understanding when blocks update the signals and when other blocks react to
the updated values is even more important.

Tips for Using Event-Based Signals

• The sample time coloration feature makes the signal connection line gray,
which normally indicates fixed in minor step. Also, querying the sample
time indicates that the signal is fixed in minor step.

• If your model includes both event-based and time-based signals, see
“Converting Between Time-Based and Event-Based Signals” on page 4-10.

Signal Restrictions for Event-Based Signals

• In the SimEvents libraries, most blocks process only signals whose data
type is double. (Exceptions are the Timed to Event Signal and Event to
Timed Signal blocks. These blocks accept input signals of any data type
and produce output signals of the same data type.)

To convert between data types, use the Data Type Conversion block.

• In the SimEvents libraries, blocks process only fixed-size signals and do
not support variable-size signals.

• An event-based signal cannot be an element of a nonvirtual bus while
retaining event-based timing. The reason is that a nonvirtual bus is an
inherently time-based signal.

4-3



4 Working with Signals

Generating Random Signals

In this section...

“Generating Random Event-Based Signals” on page 4-4

“Examples of Random Event-Based Signals” on page 4-5

Generating Random Event-Based Signals
The Event-Based Random Number block is designed to create event-based
signals using a variety of distributions. The block generates a new random
number from the distribution upon notifications from a port of a subsequent
block. For example, when connected to the t input port of a Single Server
block, the Event-Based Random Number block generates a new random
number each time it receives notification that an entity has arrived at the
server. The t input port of a Single Server block is an example of a notifying
port; for a complete list, see “Notifying Ports” on page 14-32. You must
connect the Event-Based Random Number block, directly or indirectly, to
exactly one notifying port. The notifying port tells this block when to generate
a new output value. An indirect connection must be via a block listed in
“Computational Blocks” on page 14-48 having exactly one input signal and no
function-call output signals.

For details on the connectivity restrictions of the Event-Based Random
Number block, see its reference page.

Generating Random Signals Based on Arbitrary Events
A flexible way to generate random event-based signals is to use the Signal
Latch block to indicate explicitly which events cause the Event-Based Random
Number block to generate a new random number. Use this procedure:

1 Insert an Event-Based Random Number block into your model and
configure it to indicate the distribution and parameters you want to use.

2 Insert a Signal Latch block and set Read from memory upon to Write
to memory event. The block no longer has an rvc signal input port.

4-4



Generating Random Signals

3 Determine which events should result in the generation of a new random
number, and set the Signal Latch block’s Write to memory upon
accordingly.

4 Connect the signal whose events you identified in the previous step to
the write-event port (wts, wvc, wtr, or wfcn) of the Signal Latch block.
Connect the Event-Based Random Number block to the in port of the
Signal Latch block.

The out port of the Signal Latch block is the desired random event-based
signal.

Examples of Random Event-Based Signals
Here are some examples using the Event-Based Random Number block:

• “Example: Using an Arbitrary Discrete Distribution as Intergeneration
Time” in the SimEvents getting started documentation

• “Example: A Packet Switch” in the SimEvents getting started
documentation

• “Example: Using Random Service Times in a Queuing System” in the
SimEvents getting started documentation

• “Example: Event Calendar Usage for a Queue-Server Model” on page 2-7

• “Example: M/M/5 Queuing System” on page 5-17

• “Example: Compound Switching Logic” on page 6-7

The model in “Example: Compound Switching Logic” on page 6-7 also
illustrates how to use the Signal Latch block as described in “Generating
Random Signals Based on Arbitrary Events” on page 4-4, to generate a
random number upon each departure from an Input Switch block.

The models in “Example: Invalid Connection of Event-Based Random Number
Generator” on page 13-88 illustrate how to follow the connection rules for the
Event-Based Random Number block.

4-5



4 Working with Signals

Example: Creating a Random Signal for Switching
The model below, similar to the one in , implements random output switching
with a skewed distribution. The Signal Latch block causes the Event-Based
Random Number block to generate a new random number upon each increase
in the FIFO Queue block’s #d output signal, that is, each time an entity
advances from the queue to the server. The random number becomes the
switching criterion for the Output Switch block that follows the server. The
plot reflects the skewed probability defined in the Event-Based Random
Number block, which strongly favors 1 instead of 2 or 3.

4-6



Using Data Sets to Create Event-Based Signals

Using Data Sets to Create Event-Based Signals

In this section...

“Behavior of the Event-Based Sequence Block” on page 4-7

“Generating Sequences Based on Arbitrary Events” on page 4-8

Behavior of the Event-Based Sequence Block
Suppose you have a set of measured or expected service times for a server in
the system you are modeling and you want to use that data in the simulation.
You can use the Event-Based Sequence block to create a signal whose
sequence of values comes from the data set and whose timing corresponds to
relevant events, which in this case are the arrivals of entities at the server.
You do not need to know in advance when entities will arrive at the server
because the Event-Based Sequence block automatically infers from the server
when to output the next value in the data set.

More generally, you can use the Event-Based Sequence block to incorporate
your data into a simulation via event-based signals, where the block infers
from a subsequent block when to output the next data value. You must
connect the Event-Based Sequence block, directly or indirectly, to exactly one
notifying port. The t input port of a Single Server block is an example of a
notifying port; for a list, see “Notifying Ports” on page 14-32. The notifying
port tells this block when to generate a new output value. An indirect
connection must be via a block listed in “Computational Blocks” on page 14-48
having exactly one input signal and no function-call output signals..

For details on the connectivity restrictions of the Event-Based Sequence
block, see its reference page.

For examples using this block, see these sections:

• “Specifying Generation Times for Entities” on page 1-4

• “Example: Counting Simultaneous Departures from a Server” on page 1-21

• “Example: Setting Attributes” on page 1-8

4-7



4 Working with Signals

Generating Sequences Based on Arbitrary Events
A flexible way to generate event-based sequences is to use the Signal Latch
block to indicate explicitly which events cause the Event-Based Sequence
block to generate a new output value. Use this procedure:

1 Insert an Event-Based Sequence block into your model and configure it to
indicate the data you want to use.

2 Insert a Signal Latch block and set Read from memory upon to Write
to memory event. The block no longer has an rvc signal input port.

3 Determine which events should result in the output of the next data value,
and set the Signal Latch block’sWrite to memory upon accordingly.

4 Connect the signal whose events you identified in the previous step to
the write-event port (wts, wvc, wtr, or wfcn) of the Signal Latch block.
Connect the Event-Based Sequence block to the in port of the Signal Latch
block.

The out port of the Signal Latch block is the desired event-based sequence.

Example
You can modify the model in “Example: Creating a Random Signal for
Switching” on page 4-6 by replacing the Event-Based Random Number block
with the Event-Based Sequence block.

4-8



Using Data Sets to Create Event-Based Signals

This causes the model’s Output Switch to select ports based on the data you
provide. If you set the Event-Based Sequence block’s Vector of output
values parameter to [1 2 3 2].', for example, then the switch selects ports
1, 2, 3, 2, 1, 2, 3, 2, 1,... as entities leave the queue during the simulation. If
you change Form output after final data value by to Holding final
value, then the switch selects ports 1, 2, 3, 2, 2, 2, 2,... instead.

4-9



4 Working with Signals

Converting Between Time-Based and Event-Based Signals

In this section...

“When to Convert Signals” on page 4-10

“When Not to Convert Signals” on page 4-11

“How to Convert Signals” on page 4-11

“Gateway Blocks Convert Bus Signals to Non-Bus Signals ” on page 4-12

When to Convert Signals
Time-based signals and event-based signals have different characteristics, as
described in “Comparison with Time-Based Signals” on page 4-2. Here are
some indications that you might need to convert a time-based signal into
an event-based signal, or vice versa:

• You want to connect a time-based signal to an input port of a SimEvents
block. Instead of making the connection directly, you must insert a
conversion block before the input port of the SimEvents block. The relevant
conversion blocks are Timed to Event Signal for data signals and Timed
to Event Function-Call for function-call signals.

• You are using data from an event-based signal to affect time-based
dynamics. Instead of making the connection directly, you must insert a
conversion block before the input port of the SimEvents block. The relevant
conversion blocks are Event to Timed Signal for data signals and Event to
Timed Function-Call for function-call signals.

• You want to perform a computation involving both time-based signals
and event-based signals. You must decide how you want the software to
perform the computation, and then insert conversion blocks as needed:

- If you want the software to perform the computation in an event-based
manner, insert a conversion block on each time-based signal line that is
an input to the computation. The relevant conversion blocks are Timed
to Event Signal for numerical signals and Timed to Event Function-Call
for function-call signals.

- If you want the software to perform the computation in a time-based
manner, insert a conversion block on each event-based signal line that is

4-10



Converting Between Time-Based and Event-Based Signals

an input to the computation. The relevant conversion blocks are Event
to Timed Signal for numerical signals and Event to Timed Function-Call
for function-call signals.

When Not to Convert Signals
Here are some indications that converting a time-based signal into an
event-based signal, or vice versa, might be inappropriate:

• You want to convert an event-based signal into a time-based signal
because a computational block is not in the list of supported blocks in
“Computational Blocks” on page 14-48. Before converting the signal,
consider whether you want the software to perform the computation in
an event-based manner. If you do, try connecting your event-based input
signal to an Atomic Subsystem block and putting the computational block
inside the subsystem.

• Converting an event-based signal into a time-based signal causes the loss
of zero-duration values that you want to retain.

• Converting an event-based signal into a time-based signal is unnecessary
and less efficient. If the software is capable of performing a computation
on that signal in an event-based manner with equivalent results,
the conversion might be unnecessary. For details, see Chapter 9,
“Computations on Event-Based Signals” and “Computational Blocks” on
page 14-48. If the conversion causes computations to occur when the
inputs to the computations have not changed, the conversion might reduce
simulation efficiency.

Note When using gateway blocks, you might notice behavior differences.
In particular, you will notice more sample time hits in time-based systems
than event-based systems.

How to Convert Signals
Use the blocks in the tables to convert between time-based and event-based
signals. These blocks exist in the Gateways library. The documentation refers
to these blocks collectively as gateway blocks.

4-11



4 Working with Signals

Converting Numerical Data Signals

From To Conversion Block

Time-based signal Event-based signal Timed to Event Signal

Event-based signal Time-based signal Event to Timed Signal

Converting Function-Call Signals

From To Conversion Block

Time-based signal Event-based signal Timed to Event
Function-Call

Event-based signal Time-based signal Event to Timed
Function-Call

Gateway Blocks Convert Bus Signals to Non-Bus
Signals
Gateway blocks convert bus signals to non-bus signals. If your model uses
bus signals, in the Configuration Parameters dialog box, consider setting the
Diagnostics > Connectivity Bus signal treated as vector parameter to
error. If there is an issue when you compile the model, you will see a cannot
propagate bus signal error about the gateway block. If you see this error:

1 Add a Bus Selector block to the output port of the block that generates a
bus signal.

2 For each signal output from the Bus Selector block, add a gateway block
and connect the signal.

3 Add a Bus Creator block and connect the output from each gateway block
to the input of the Bus Creator block.

4 Connect the output from the Bus Creator block to the input port of the
block that requires that bus signal.

5 Compile your model.

4-12



Converting Between Time-Based and Event-Based Signals

If you do not make this diagnostic setting, but upon model compilation,
receive an error from the block that requires the bus signal, perform the
workaround steps and recompile your model.

4-13



4 Working with Signals

Manipulating Signals

In this section...

“Specifying Initial Values of Event-Based Signals” on page 4-14

“Example: Resampling a Signal Based on Events” on page 4-15

Specifying Initial Values of Event-Based Signals
Use the Initial Value block to modify the value that an event-based signal
assumes between the start of the simulation and the first event affecting that
signal. This technique is especially useful for event-based output signals from
nonvirtual subsystems, Stateflow blocks, and feedback loops.

To define the initial value of an event-based signal, use this procedure:

1 Set the Value until first sample time hit parameter in the Initial Value
block to your desired initial value.

2 Insert the Initial Value block on the line representing the signal whose
initial value you want to modify.

The next schematic illustrates the meaning of the input and output signals of
the Initial Value block.

The Initial Value block’s output signal uses your initial value until your
original signal has its first sample time hit (that is, its first update).
Afterward, the output signal signal and your original signal are identical.

The following examples illustrate this technique:

• “Example: Controlling Joint Availability of Two Servers” on page 7-4
initializes an event-based signal for use in a feedback loop.

4-14



Manipulating Signals

• “Example: Failure and Repair of a Server” on page 5-21 initializes an
event-based signal that is the output of a Stateflow block.

Example: Resampling a Signal Based on Events
The example below contains a server that supports preemption of
normal-priority entities by high-priority entities. This is similar to “Example:
Preemption by High-Priority Entities” on page 5-11. Suppose that a
preemption and the subsequent service of a high-priority entity represent a
time interval during which the server is inoperable. The goal of this example
is to find out how many entities are in the queue when the breakdown begins.
Note that new head of queue events also affect the number of entities in the
queue.

A plot of the Priority Queue block’s #n output signal indicates how many
entities are in the queue at all times during the simulation.

4-15



4 Working with Signals

The Signal Latch block resamples the #n signal, focusing only on the values
that #n assumes when a high-priority queue preempts an entity already in
the server. The Signal Latch block outputs a sample from the #n signal
whenever the Single Server block’s #p output signal increases, where #p is
the number of entities that have been preempted from the server. Between
pairs of successive preemption events, the Signal Latch block does not update
its output signal, ignoring changes in #n. A plot of the output from the Signal
Latch block makes it easier to see how many entities are in the queue when
the breakdown begins, compared to the plot of the entire #n signal.

4-16



Sending Data to the MATLAB® Workspace

Sending Data to the MATLAB Workspace

In this section...

“Behavior of the Discrete Event Signal to Workspace Block” on page 4-17

“Example: Sending Queue Length to the Workspace” on page 4-17

Behavior of the Discrete Event Signal to Workspace
Block
The Discrete Event Signal to Workspace block writes event-based signals to
the MATLAB workspace when the simulation stops or pauses. One way to
pause a running simulation is to select Simulation > Pause.

Note To learn how to read data from the workspace during a discrete-event
simulation, see “Using Data Sets to Create Event-Based Signals” on page 4-7.

Example: Sending Queue Length to the Workspace
The example below shows one way to write the times and values of an
event-based signal to the MATLAB workspace. In this case, the signal is
the #n output from a FIFO Queue block, which indicates how many entities
the queue holds.

After you run this simulation, you can use the following code to create a
two-column matrix containing the time values in the first column and the
signal values in the second column.

4-17



4 Working with Signals

times_values = [num_in_queue.time, num_in_queue.signals.values]

The output reflects the Time-Based Entity Generator block’s constant
intergeneration time of 0.8 second and the Single Server block’s constant
service time of 1.1 second. The first row of the times_values matrix
represents the initial value of the #n signal.

4-18



Sending Data to the MATLAB® Workspace

times_values =

0 0
0 1.0000
0 0

0.8000 1.0000
1.1000 0
1.6000 1.0000
2.2000 0
2.4000 1.0000
3.2000 2.0000
3.3000 1.0000
4.0000 2.0000
4.4000 1.0000
4.8000 2.0000
5.5000 1.0000
5.6000 2.0000
6.4000 3.0000
6.6000 2.0000
7.2000 3.0000
7.7000 2.0000
8.0000 3.0000
8.8000 4.0000
8.8000 3.0000
9.6000 4.0000
9.9000 3.0000

From the output, you can see that the number of entities in the queue
increases at times that are a multiple of 0.8, and decreases at times that
are a multiple of 1.1. At T=8.8, a departure from the server and an entity
generation occur simultaneously; both events influence the number of entities
in the queue. The output shows two values corresponding to T=8.8, enabling
you to see the zero-duration value that the signal assumes at this time.

4-19



4 Working with Signals

Working with Multivalued Signals

In this section...

“Zero-Duration Values of Signals” on page 4-20

“Importance of Zero-Duration Values” on page 4-21

“Detecting Zero-Duration Values” on page 4-21

Zero-Duration Values of Signals
Some output signals from SimEvents blocks produce a new output value for
each departure from the block. When multiple departures occur in a single
time instant, the result is a multivalued signal. That is, at a given instant in
time, the signal assumes multiple values in sequence. The sequence of values
corresponds to the sequence of departures. Although the departures and
values have a well-defined sequence, no time elapses between adjacent events.

Scenario: Server Departure and New Arrival
For example, consider the scenario in which an entity departs from a single
server at time T and, consequently, permits another entity to arrive from a
queue that precedes the server. The statistic representing the number of
entities in the server is 1 just before time T because the first entity has not
completed its service. The statistic is 1 just after time T because the second
entity has begun its service. At time T, the statistic is 0 before it becomes 1
again. The value of 0 corresponds to the server’s empty state after the first
entity has departed and before the second entity has arrived. Like this empty
state, the value of 0 does not persist for a positive duration.

Scenario: Queue Length
Another example of zero-duration values is in “Plotting the Queue-Length
Signal”, which discusses a signal that indicates the length of a queue. At time
3, the queue length increases by 1 because a new entity arrives. Subsequently
but still at time 3, the queue length decreases by 1 because an entity advances
from the queue to the server. That is, the larger value at time 3 does not
persist for a positive duration.

4-20



Working with Multivalued Signals

Importance of Zero-Duration Values
The values of signals, even values that do not persist for a positive duration,
can help you understand or debug your simulations. In the example
described in “Scenario: Server Departure and New Arrival” on page 4-20, the
zero-duration value of 0 in the signal tells you that the server experienced
a departure. If the signal assumed only the value 1 at time T (because 1
is the final value at time T), then the constant values before, at, and after
time T would fail to indicate the departure. While you could use a departure
count signal to detect departures specifically, the zero-duration value in the
number-in-block signal provides you with more information in a single signal.

Detecting Zero-Duration Values
These topics describe ways to detect and examine zero-duration values:

• “Plotting Signals that Exhibit Zero-Duration Values” on page 4-21

• “Plotting the Number of Signal Changes Per Time Instant” on page 4-22

• “Viewing Zero-Duration Values in the MATLAB Workspace” on page 4-23

Plotting Signals that Exhibit Zero-Duration Values
One way to visualize event-based signals, including signal values that do not
persist for a positive duration, is to use the Signal Scope or X-Y Signal Scope
block. Either of these blocks can produce a plot that includes a marker for
each signal value (or each signal-based event, in the case of the event counting
scope). For example, the figure below uses a plot to illustrate the situation
described in “Scenario: Server Departure and New Arrival” on page 4-20.

4-21



4 Working with Signals

��������	����
��
��

��������	�������

�����
��
������������

������������	�����
�

���
��
������������

When multiple plotting markers occur along the same vertical line, it means
that the signal assumes multiple values at a single time instant. The callouts
in the figure describe the server states that correspond to a few key points of
the plot.

Plotting the Number of Signal Changes Per Time Instant
To detect the presence of zero-duration values, but not the values themselves,
use the Instantaneous Event Counting Scope block with the Type of change
in signal value parameter set to Either. When the input signal assumes
multiple values at an instant of time, the plot shows a stem of height of two or
greater.

For an example using this block, see “Example: Plotting Event Counts to
Check for Simultaneity” on page 10-15.

4-22



Working with Multivalued Signals

Viewing Zero-Duration Values in the MATLAB Workspace
If an event-based signal assumes many values at one time instant and you
cannot guess the sequence from a plot of the signal versus time, then you can
get more information by examining the signal in the MATLAB workspace.
By creating a variable that contains each time and signal value, you can
recover the exact sequence in which the signal assumed each value during the
simulation.

See “Sending Data to the MATLAB Workspace” on page 4-17 for instructions
and an example.

4-23



4 Working with Signals

4-24



5

Modeling Queues and
Servers

The topics below supplement the discussion in “Basic Queues and Servers”
in the SimEvents getting started documentation.

• “Example: LIFO Queue Waiting Time” on page 5-2

• “Sorting by Priority” on page 5-4

• “Preempting an Entity in a Server” on page 5-10

• “Determining Whether a Queue Is Nonempty” on page 5-16

• “Modeling Multiple Servers” on page 5-17

• “Modeling the Failure of a Server” on page 5-19



5 Modeling Queues and Servers

Example: LIFO Queue Waiting Time
This example compares the FIFO and LIFO disciplines in a D/D/1 queuing
system with an intergeneration time of 0.3 and a service time of 1.

5-2



Example: LIFO Queue Waiting Time

5-3



5 Modeling Queues and Servers

Sorting by Priority

In this section...

“Behavior of the Priority Queue Block” on page 5-4

“Example: FIFO and LIFO as Special Cases of a Priority Queue” on page 5-4

“Example: Serving Preferred Customers First” on page 5-7

Behavior of the Priority Queue Block
The Priority Queue block supports queuing in which entities’ positions in
the queue are based primarily on their attribute values. Arrival times are
relevant only when attribute values are equal. You specify the attribute
and the sorting direction using the Sorting attribute name and Sorting
direction parameters in the block’s dialog box. To assign values of the
attribute for each entity, you can use the Set Attribute block as described in
“Setting Attributes of Entities” on page 1-6.

Note While you can view the value of the sorting attribute as an entity
priority, this value has nothing to do with event priorities or block priorities.

Example: FIFO and LIFO as Special Cases of a Priority
Queue
Two familiar cases are shown in the example below, in which a priority queue
acts like a FIFO or LIFO queue. At the start of the simulation, the FIFO
and LIFO sections of the model each generate nine entities. The first entity
advances to a server. The remaining entities stay in the queues until the
server becomes available. The sorting attribute is Count, whose values are
the entities’ arrival sequence at the queue block. In this example, the servers
do not permit preemption; preemptive servers would behave differently.

5-4



Sorting by Priority

The FIFO plot reflects an increasing sequence of Count values. The LIFO plot
reflects a descending sequence of Count values.

5-5



5 Modeling Queues and Servers

5-6



Sorting by Priority

Example: Serving Preferred Customers First
In the example below, two types of customers enter a queuing system. One
type, considered to be preferred customers, are less common but require
longer service. The priority queue places preferred customers ahead of
nonpreferred customers. The model plots the average system time for the set
of preferred customers and separately for the set of nonpreferred customers.

You can see from the plots that despite the shorter service time, the average
system time for the nonpreferred customers is much longer than the average
system time for the preferred customers.

5-7



5 Modeling Queues and Servers

Average System Time for Nonpreferred Customers Sorted by Priority

Average System Time for Preferred Customers Sorted by Priority

Comparison with Unsorted Behavior
If the queue used a FIFO discipline for all customers instead of a priority
sorting, then the average system time would decrease slightly for the
nonpreferred customers and increase markedly for the preferred customers.

5-8



Sorting by Priority

Average System Time for Nonpreferred Customers Unsorted

Average System Time for Preferred Customers Unsorted

5-9



5 Modeling Queues and Servers

Preempting an Entity in a Server

In this section...

“Definition of Preemption” on page 5-10

“Criteria for Preemption” on page 5-10

“Residual Service Time” on page 5-11

“Queuing Disciplines for Preemptive Servers” on page 5-11

“Example: Preemption by High-Priority Entities” on page 5-11

Definition of Preemption
Preemption from a server is the replacement of an entity in the server by
a different entity that satisfies certain criteria. The Single Server block
supports preemption. The preempted entity immediately departs from the
block through the P entity output port instead of through the usual OUT port.

Criteria for Preemption
Whether preemption occurs depends on attribute values of the entity in
the server and of the entity attempting to arrive at the server. You specify
the attribute using the Sorting attribute name parameter in the Single
Server block’s dialog box. You use the Sorting direction parameter to
indicate whether the preempting entity has a smaller (Ascending) or larger
(Descending) value of the attribute, compared to the entity being replaced.
(Both parameters are available after you select Permit preemption based
on attribute.) To assign values of the sorting attribute for each entity,
you can use the Set Attribute block, as described in “Setting Attributes of
Entities” on page 1-6. Valid values for the sorting attribute are any real
numbers, Inf, and -Inf.

If the attribute values are equal, no preemption occurs.

When preemption is supposed to occur, the P port must not be blocked.
Consider connecting the P port to a queue or server with infinite capacity, to
prevent a blockage during the simulation.

5-10



Preempting an Entity in a Server

Note You can interpret the value of the sorting attribute as an entity priority.
However, this value has nothing to do with event priorities or block priorities.

Residual Service Time
A preempted entity might or might not have completed its service time.
The remaining service time the entity would have required if it had not
been preempted is called the entity’s residual service time. If you select
Write residual service time to attribute in the Single Server block,
then the block records the residual service time of each preempted entity in
an attribute of that entity. If the entity completes its service time before
preemption occurs, then the residual service time is zero.

For entities that depart from the block’s OUT entity output port (that is,
entities that are not preempted), the block records a residual service time
only if the entity already has an attribute whose name matches the Residual
service time attribute name parameter value. In this case, the block sets
that attribute to zero when the entity departs from the OUT port.

Queuing Disciplines for Preemptive Servers
When you permit preemption in a Single Server block preceded by a queue,
only the entity at the head of the queue can preempt an entity in the server.

The Priority Queue block is particularly appropriate for use with the
preemption feature of the Single Server block. When an entity with
sufficiently high priority arrives at the Priority Queue block, the entity goes
to the head of the queue and immediately advances to the server.

Example: Preemption by High-Priority Entities
The following example generates two classes of entities, most with an
EntityPriority attribute value of 0 and some with an EntityPriority
attribute value of -Inf. The sorting direction in the Priority Queue and Single
Server blocks is Ascending, so entities with sorting attribute values of -Inf
go to the head of the priority queue and immediately preempt any entity in
the server except another entity whose sorting attribute value is -Inf.

5-11



5 Modeling Queues and Servers

One plot shows when nonpreemptive departures occur, while another plot
indicates the residual service time whenever preemptive departures occur.

5-12



Preempting an Entity in a Server

Appearance of Preemption-Related Operations in Debugger
To see how operations related to preemption appear in the SimEvents
debugger, first zoom in on the plot of residual service time to find approximate
times when preemptions occur. For example, the second preemption occurs
shortly after T=17. Then, use the debugger:

1 Begin a debugger session for the example model. At the MATLAB
command prompt, enter:

simeventsdocex('doc_preemptiveserver');
sedebug('doc_preemptiveserver')

2 Proceed in the simulation. At the sedebug>> prompt, enter:

tbreak 17
cont

The partial output indicates that an event is about to execute shortly
after T=17:

Hit b1 : Breakpoint for first operation at or after time 17

%==============================================================================%

Executing EntityGeneration Event (ev43) Time = 17.043502632805254

: Entity = <none> Priority = 300

: Block = Time-Based Entity Generator1

The event is the generation of the entity that preempts an entity in the
server, but you cannot see that level of detail yet.

3 Proceed in the simulation to see what happens as a result of the event
execution:

step over
step over
step

The output shows that a new entity with identifier en11 advances to the
head (position 1) of the priority queue and preempts the entity in the server.

%..........................................................................%

Generating Entity (en11)

5-13



5 Modeling Queues and Servers

: Block = Time-Based Entity Generator1

%..........................................................................%

Entity Advancing (en11)

: From = Time-Based Entity Generator1

: To = Set Attribute1

%..........................................................................%

Setting Attribute on Entity (en11)

: EntityPriority = -Inf

: Block = Set Attribute1

%..........................................................................%

Entity Advancing (en11)

: From = Set Attribute1

: To = Path Combiner

%..........................................................................%

Entity Advancing (en11)

: From = Path Combiner

: To = Priority Queue

%..........................................................................%

Queuing Entity (en11)

: Priority Pos = 1 of 1

: Capacity = 25

: Block = Priority Queue

%..........................................................................%

Scheduling NewHeadOfQueue Event (ev42)

: EventTime = 10.146322994963107 (Now)

: Priority = SYS2

: Entity = <none>

: Block = Priority Queue

%..........................................................................%

Scheduling EntityGeneration Event (ev43)

: EventTime = 17.043502632805254

: Priority = 300

: Entity = <none>

: Block = Time-Based Entity Generator1

%==============================================================================%

Executing NewHeadOfQueue Event (ev42) Time = 10.146322994963107

: Entity = <none> Priority = SYS2

: Block = Priority Queue

%..........................................................................%

Entity Advancing (en11)

5-14



Preempting an Entity in a Server

: From = Priority Queue

: To = Single Server

%..........................................................................%

Preempting Entity (en10)

: NewEntity = en11 (EntityPriority = -Inf)

: OldEntity = en10 (EntityPriority = 0)

: Block = Single Server

Further output reflects the effect on the preempted entity: its service
completion event no longer applies, it carries the residual service time in
an attribute, and it advances to the block that connects to the P port of the
server.

%..........................................................................%

Canceling ServiceCompletion Event (ev41)

: EventTime = 11.041868743772771

: Priority = 500

: Entity = en10

: Block = Single Server

%..........................................................................%

Setting Attribute on Entity (en10)

: ResidualServiceTime = 0.895545748809663

: Block = Single Server

%..........................................................................%

Entity Advancing (en10)

: From = Single Server

: To = Attribute Scope

%..........................................................................%

Destroying Entity (en10)

: Block = Attribute Scope

4 End the debugger session. At the sedebug>> prompt, enter:

sedb.quit

5-15



5 Modeling Queues and Servers

Determining Whether a Queue Is Nonempty
To determine whether a queue is storing any entities, use this technique:

1 Enable the #n output signal from the queue block. In the block dialog
box, on the Statistics tab, select the Number of entities in queue, #n
check box.

2 From the Math Operations library in the Simulink library set, insert a
Sign block into the model. Connect the #n output port of the queue block
to the input port of the Sign block.

The Sign block output has values of 0 and 1. A value of 1 indicates that the
queue is storing one or more entities. A value of 0 indicates that the queue
is not storing any entities.

5-16



Modeling Multiple Servers

Modeling Multiple Servers

In this section...

“Blocks that Model Multiple Servers” on page 5-17

“Example: M/M/5 Queuing System” on page 5-17

Blocks that Model Multiple Servers
You can use the N-Server and Infinite Server blocks to model a bank of
identical servers operating in parallel. The N-Server block lets you specify
the number of servers using a parameter, while the Infinite Server block
models a bank of infinitely many servers.

To model multiple servers that are not identical to each other, you must use
multiple blocks. For example, to model a pair of servers whose service times
do not share the same distribution, use a pair of Single Server blocks rather
than a single N-Server block. The example in “Example: Selecting the First
Available Server” in the SimEvents getting started documentation illustrates
the use of multiple Single Server blocks with a switch.

Example: M/M/5 Queuing System
The example below shows a system with infinite storage capacity and five
identical servers. In the notation, the M stands for Markovian; M/M/5 means
that the system has exponentially distributed interarrival and service times,
and five servers.

5-17



5 Modeling Queues and Servers

The plot below shows the waiting time in the queuing system.

You can compare the empirical values shown in the plot with the theoretical
value, E[S], of the mean system time for an M/M/m queuing system with an
arrival rate of λ=1/2 and a service rate of μ=1/5. Using expressions in [2],
the computation is as follows.

ρ λ
μ

π ρ ρ
ρ

= = =

= + +
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥

=

−

∑

m

m
n

m
m

n m

n

m

( / )
( / )

( )
!

( )
!

1 2
5 1 5

1
2

1
1

10
1

1

⎥⎥
≈

= +
−

≈

−1

0
2

0 0801

1 1

1
5 26

.

[ ]
( )

! ( )
.E S

m
m m

m

μ μ
ρ π

ρ

Zooming in the plot shows that the empirical value is close to 5.26.

5-18



Modeling the Failure of a Server

Modeling the Failure of a Server

In this section...

“Server States” on page 5-19

“Using a Gate to Implement a Failure State” on page 5-19

“Using Stateflow Charts to Implement a Failure State” on page 5-20

Server States
In some applications, it is useful to model situations in which a server fails.
For example, a machine might break down and later be repaired, or a network
connection might fail and later be restored. This section explores ways to
model failure of a server, as well as server states.

The blocks in the Servers library do not have built-in states, so you can design
states in any way that is appropriate for your application. Some examples of
possible server states are in the table below.

Server as
Communication
Channel

Server as Machine Server as Human
Processor

Transmitting message Processing part Working

Connected but idle Waiting for new part to
arrive

Waiting for work

Unconnected Off Off duty

Holding message
(pending availability of
destination)

Holding part (pending
availability of next
operator)

Waiting for resource

Establishing connection Warming up Preparing to begin work

Using a Gate to Implement a Failure State
For any state that represents a server’s inability or refusal to accept
entity arrivals even though the server is not necessarily full, a common
implementation involves an Enabled Gate block preceding the server.

5-19



5 Modeling Queues and Servers

The gate prevents entity access to the server whenever the gate’s control
signal at the en input port is zero or negative. The logic that creates the en
signal determines whether or not the server is in a failure state. You can
implement such logic using the MATLAB Function block, using a subsystem
containing logic blocks, or using Stateflow charts to transition among a finite
number of server states.

For an example in which an Enabled Gate block precedes a server, see
“Example: Controlling Joint Availability of Two Servers” on page 7-4. The
example is not specifically about a failure state, but the idea of controlling
access to a server is similar. Also, you can interpret the Signal Latch block
with the st output signal enabled as a two-state machine that changes state
when read and write events occur.

Note A gate prevents new entities from arriving at the server but does not
prevent the current entity from completing its service. If you want to eject
the current entity from the server upon a failure occurrence, then you can
use the preemption feature of the server to replace the current entity with
a high-priority “placeholder” entity.

Using Stateflow Charts to Implement a Failure State
Stateflow software is suitable for implementing transitions among a finite
number of server states. If you need to support more than just two states,
then a Stateflow block might be more natural than a combination of Enabled
Gate and logic blocks.

When modeling interactions between the state chart and discrete-event
aspects of the model, note that a function call is one way to make Stateflow
blocks respond to asynchronous state changes. You can use blocks in the
Event Generators and Event Translation libraries to produce a function call
upon signal-based events or entity departures; the function call can invoke a
Stateflow block. Conversely, a Stateflow block can output a function call that
can cause a gate to open, an entity counter to reset, or an entity generator to
generate a new entity.

5-20



Modeling the Failure of a Server

Example: Failure and Repair of a Server
The example below uses a Stateflow block to describe a two-state machine. A
server is either down (failed) or up (operable). The state of the server is an
output signal from the Stateflow block and is used to create the enabling
signal for an Enabled Gate block that precedes a server in a queuing system.

The lower portion of the model contains a parallel queuing system. The
entities in the lower queuing system represent failures, not customers.
Generation of a failure entity represents a failure occurrence in the upper
queuing system. Service of a failure entity represents the time during which
the server in the upper queuing system is down. Completion of service of a
failure entity represents a return to operability of the upper queuing system.

When the lower queuing system generates an entity, changes in its server’s
#n signal invoke the Stateflow block that determines the state of the upper
queuing system. Increases in the #n signal cause the server to go down, while
decreases cause the server to become operable again.

5-21



5 Modeling Queues and Servers

While this simulation runs, Stateflow alternately highlights the up and down
states. The plot showing entity departures from the upper queuing system
shows gaps, during which the server is down.

Although this two-state machine could be modeled more concisely with a
Signal Latch block instead of a Stateflow block, the Stateflow chart scales
more easily to include additional states or other complexity.

5-22



Modeling the Failure of a Server

Example: Adding a Warmup Phase
The example below modifies the one in “Example: Failure and Repair of a
Server” on page 5-21 by adding a warmup phase after the repair is complete.
The Enabled Gate block in the upper queuing system does not open until the
repair and the warmup phase are complete. In the lower queuing system, an
additional Single Server block represents the duration of the warmup phase.

In the Stateflow block, the input function calls controls when the repair
operation starts, when it ends, and when the warmup is complete. The result
of the function-call event depends on the state of the chart when the event
occurs. A rising edge of the Repair Work block’s #n signal starts the repair
operation, a falling edge of the same signal ends the repair operation, and a
falling edge of the Warmup block’s #n signal completes the warmup.

5-23



5 Modeling Queues and Servers

While this simulation runs, the Stateflow chart alternates among the three
states. The plot showing entity departures from the upper queuing system
shows gaps, during which the server is either under repair or warming up. By
comparing the plot to the one in “Example: Failure and Repair of a Server”
on page 5-21, you can see that the gaps in the server’s operation last slightly
longer. This is because of the warmup phase.

5-24



6

Routing Techniques

The topics below supplement the discussion in “Designing Paths for Entities”
in the SimEvents getting started documentation.

• “Output Switching Based on a Signal” on page 6-2

• “Example: Cascaded Switches with Skewed Distribution” on page 6-6

• “Example: Compound Switching Logic” on page 6-7

• “Example: Choosing the Shortest Queue” on page 6-10



6 Routing Techniques

Output Switching Based on a Signal

In this section...

“Specifying an Initial Port Selection” on page 6-2

“Using the Storage Option to Prevent Latency Problems” on page 6-2

Specifying an Initial Port Selection
When the Output Switch block uses an input signal p, the block might
attempt to use the p signal before its first sample time hit. If the initial value
of the p signal is out of range (for example, zero) or is not your desired initial
port selection for the switch, then you should specify the initial port selection
in the Output Switch block’s dialog box. Use this procedure:

1 Select Specify initial port selection.

2 Set Initial port selection to the desired initial port selection. The value
must be an integer between 1 and Number of entity output ports. The
Output Switch block uses Initial port selection instead of the p signal’s
value until the signal has its first sample time hit.

Tip A common scenario in which you should specify the initial port selection
is when the p signal is an event-based signal in a feedback loop. The first
entity is likely to arrive at the switch before the p signal has its first sample
time hit. See “Example: Choosing the Shortest Queue” on page 6-10 for an
example of this scenario.

Using the Storage Option to Prevent Latency
Problems
When the Output Switch block uses an input signal p, the block must
successfully coordinate its entity-handling operations with the operations of
whichever block produces the p signal. For example, if p is an event-based
signal that can change at the same time when an entity arrives, the
simulation behavior depends on whether the block reacts to the signal update
before or after the arrival.

6-2



Output Switching Based on a Signal

Coordination that is inappropriate for the model can cause the block to use a
value of p from a previous time. You can prevent a systemic latency problem
by using the Store entity before switching option.

Effect of Enabling Storage
If you select Store entity before switching in the Output Switch block, then
the block becomes capable of storing one entity at a time. Furthermore, the
block decouples its arrival and departure processing to give other blocks along
the entity’s path an opportunity to complete their processing. Completing
their processing is important if, for example, it affects the p signal of the
Output Switch block.

If an entity arrives and the storage location is empty, then the block does
the following:

1 Stores the arriving entity and schedules a storage completion event on the
event calendar.

2 Yields control to blocks in the model that perform operations that are either
not scheduled on the event calendar, or prioritized ahead of the storage
completion event on the event calendar. For example, this might give other
blocks a chance to update the signal that connects to the p port.

3 Executes the storage completion event.

4 Determines which entity output port is the selected port.

5 If the selected port is not blocked, the stored entity departs immediately.

If the selected port is blocked, the stored entity departs when one of these
occurs:

• The selected port becomes unblocked.

• The selection changes to a port that is not blocked.

• The stored entity times out. For details on timeouts, see Chapter 8,
“Forcing Departures Using Timeouts”.

6-3



6 Routing Techniques

Storage for a Time Interval. A stored entity can stay in the block for a
nonzero period of time if the selected port is blocked. The design of your
model should account for the effect of this phenomenon on statistics or other
simulation behaviors. For an example scenario, see the discussion of average
wait in “Example Without Storage” on page 6-5.

Even if the stored entity departs at the same time that it arrives, step 2 on
page 6-3 is important for preventing latency.

Example Using Storage. The model in “Example: Choosing the Shortest
Queue” on page 6-10 uses the Store entity before switching option in the
Output Switch block. Suppose the queues have sufficient storage capacity so
that the Output Switch block never stores an entity for a nonzero period of
time. When an entity arrives at the Output Switch block, it does the following:

1 Stores the entity and schedules a storage completion event on the event
calendar.

2 Yields control to other blocks so that the Time-Based Entity Generator and
the subsystem can update their output signals in turn.

3 Executes the storage completion event.

4 Possibly detects a change in the p signal as a result of the subsystem
computation, and reacts accordingly by selecting the appropriate entity
output port.

5 Outputs the entity using the up-to-date value of the p signal.

Effect of Disabling Storage
If you do not select Store entity before switching in the Output Switch
block, then the block processes an arrival and departure as an atomic
operation. The block assumes that the p signal is already up to date at the
given time.

For common problems and troubleshooting tips, see “Unexpected Use of Old
Value of Signal” on page 13-80 in the SimEvents user guide documentation.

6-4



Output Switching Based on a Signal

Example Without Storage. The model below does not use the Store entity
before switching option in the Output Switch block. Storage in the switch is
unnecessary here because the application processes service completion events
after the Repeating Sequence Stair block has already updated its output
signal at the given time.

Tip It is not always easy to determine whether storage is unnecessary in
a given model. If you are not sure, you should select Store entity before
switching.

Furthermore, storage in the switch is probably undesirable in this model.
Storing entities in the Output Switch block for a nonzero period of time would
affect the computation of average wait, which is the N-Server block’s w output
signal. If the goal is to compute the average waiting time of entities that
have not yet reached the Single Server blocks, then the model would need to
account for entities stored in the switch for a nonzero period of time.

6-5



6 Routing Techniques

Example: Cascaded Switches with Skewed Distribution
Suppose entities represent manufactured items that undergo a quality control
process followed by a packaging process. Items that pass the quality control
test proceed to one of three packaging stations, while items that fail the
quality control test proceed to one of two rework stations. You can model the
decision making using these switches:

• An Output Switch block that routes items based on an attribute that stores
the results of the quality control test

• An Output Switch block that routes passing-quality items to the packaging
stations

• An Output Switch block that routes failing-quality items to the rework
stations

The figure below illustrates the switches and their switching criteria.

6-6



Example: Compound Switching Logic

Example: Compound Switching Logic
Suppose a single server processes entities from two groups each consisting
of three sources. The switching component between the entity sources and
the server determines which entities proceed to the server whenever it is
available. The switching component uses a distribution that is skewed toward
entities from the first group. Within each group, the switching component
uses a round-robin approach.

The example below shows how to implement this design using three Input
Switch blocks. The first two Input Switch blocks have their Switching
criterion parameter set to Round robin to represent the processing of
entities within each group of entity sources. The last Input Switch block uses
a random signal with a skewed probability distribution to choose between the
two groups. The Signal Latch block causes the random number generator to
draw a new random number after each departure from the last Input Switch
block.

6-7



6 Routing Techniques

For tracking purposes, the model assigns an attribute to each entity based
on its source. The attribute values are 1, 2, and 3 for entities in the first
group and -1, -2, and -3 for entities in the second group. You can see from
the plot below that negative values occur less frequently than positive
values, reflecting the skewed probability distribution. You can also see that
the positive values reflect a round-robin approach among servers in the top
group, while negative values reflect a round-robin approach among servers
in the bottom group.

6-8



Example: Compound Switching Logic

6-9



6 Routing Techniques

Example: Choosing the Shortest Queue
The model below directs entities to the shortest of three queues. It uses an
Output Switch block to create the paths to the different queues. To implement
the choice of the shortest queue, a discrete event subsystem queries each
queue for its current length, determines which queue or queues achieve
the minimum length, and provides that information to the Output Switch
block. To ensure that the information is up to date when the Output Switch
block attempts to output the arriving entity, the block uses the Store entity
before switching option; for details, see “Using the Storage Option to
Prevent Latency Problems” on page 6-2.

For simplicity, the model omits any further processing of the entities after
they leave their respective queues.

Although the block diagram shows signals at the #n signal output ports from
the queue blocks and another signal at the p signal input port of the Output
Switch block, the block diagram does not indicate how to compute p from
the set of #n values. That computation is performed inside a discrete event
subsystem that contains the MATLAB Function block.

6-10



Example: Choosing the Shortest Queue

Subsystem Contents

If you double-click the MATLAB Function block in a model, an editor window
shows the MATLAB function that specifies the block. In this example, the
following MATLAB function computes the index of a queue having the
shortest length, where the individual queue lengths are n1, n2, and n3. If
more than one queue achieves the minimum, then the computation returns
the smallest index among the queues that minimize the length.

function p = findmin(n1, n2, n3)

% p is the index of a queue having the shortest length.
[~, p] = min([n1 n2 n3]);

Note For visual simplicity, the model uses Goto and From blocks to connect
the #n signals to the computation.

6-11



6 Routing Techniques

The figure below shows a sample plot. Each stem corresponds to an entity
departing from the switch block via one of the three entity output ports.

6-12



7

Regulating Arrivals Using
Gates

• “Role of Gates in SimEvents Models” on page 7-2

• “Keeping a Gate Open Over a Time Interval” on page 7-4

• “Opening a Gate Instantaneously” on page 7-6

• “Adding Gating Logic Using Combinations of Gates” on page 7-9



7 Regulating Arrivals Using Gates

Role of Gates in SimEvents Models

In this section...

“Overview of Gate Behavior” on page 7-2

“Types of Gate Blocks” on page 7-3

Overview of Gate Behavior
By design, certain blocks change their availability to arriving entities
depending on the circumstances. For example,

• A queue or server accepts arriving entities as long as it is not already full
to capacity.

• An input switch accepts an arriving entity through a single selected entity
input port but forbids arrivals through other entity input ports.

Some applications require more control over whether and when entities
advance from one block to the next. A gate provides flexible control via its
changing status as either open or closed: by definition, an open gate permits
entity arrivals as long as the entities would be able to advance immediately to
the next block, while a closed gate forbids entity arrivals. You configure the
gate so that it opens and closes under circumstances that are meaningful in
your model.

For example, you might use a gate

• To create periods of unavailability of a server. For example, you might be
simulating a manufacturing scenario over a monthlong period, where a
server represents a machine that runs only 10 hours per day. An enabled
gate can precede the server, to make the server’s availability contingent
upon the time.

To learn about enabled gates, which can remain open for a time interval
of nonzero length, see “Keeping a Gate Open Over a Time Interval” on
page 7-4.

• To make departures from one queue contingent upon departures from a
second queue. A release gate can follow the first queue. The gate’s control

7-2



Role of Gates in SimEvents® Models

signal determines when the gate opens, based on decreases in the number
of entities in the second queue.

To learn about release gates, which open and then close in the same time
instant, see “Opening a Gate Instantaneously” on page 7-6.

• With the First port that is not blocked mode of the Output Switch
block. Suppose each entity output port of the switch block is followed by a
gate block. An entity attempts to advance via the first gate; if it is closed,
then the entity attempts to advance via the second gate, and so on.

This arrangement is explored in “Adding Gating Logic Using Combinations
of Gates” on page 7-9.

Types of Gate Blocks
The Gates library offers these fundamentally different kinds of gate blocks:

• The Enabled Gate block, which uses a control signal to determine time
intervals over which the gate is open or closed. For more information, see
“Keeping a Gate Open Over a Time Interval” on page 7-4.

• The Release Gate block, which uses a control signal to determine a discrete
set of times at which the gate is instantaneously open. The gate is closed at
all other times during the simulation. For more information, see “Opening
a Gate Instantaneously” on page 7-6.

Tip Many models follow a gate with a storage block, such as a queue or server.

7-3



7 Regulating Arrivals Using Gates

Keeping a Gate Open Over a Time Interval

In this section...

“Behavior of Enabled Gate Block” on page 7-4

“Example: Controlling Joint Availability of Two Servers” on page 7-4

Behavior of Enabled Gate Block
The Enabled Gate block uses a control signal at the input port labeled en to
determine when the gate is open or closed:

• When the en signal is positive, the gate is open and an entity can arrive as
long as it would be able to advance immediately to the next block.

• When the en signal is zero or negative, the gate is closed and no entity
can arrive.

Because the en signal can remain positive for a time interval of arbitrary
length, an enabled gate can remain open for a time interval of arbitrary
length. The length can be zero or a positive number.

Depending on your application, the gating logic can arise from time-driven
dynamics, state-driven dynamics, a SimEvents block’s statistical output
signal, or a computation involving various types of signals. The en signal
must be an event-based signal. To convert a time-based signal into an
event-based signal, use the Timed to Event Signal block.

Example: Controlling Joint Availability of Two
Servers
Suppose that each entity undergoes two processes, one at a time, and that
the first process does not start if the second process is still in progress for the
previous entity. Assume for this example that it is preferable to model the
two processes using two Single Server blocks in series rather than one Single
Server block whose service time is the sum of the two individual processing
times; for example, you might find a two-block solution more intuitive or you
might want to access the two Single Server blocks’ utilization output signals
independently in another part of the model.

7-4



Keeping a Gate Open Over a Time Interval

If you connect a queue, a server, and another server in series, then the first
server can start serving a new entity while the second server is still serving
the previous entity. This does not accomplish the stated goal. The model
needs a gate to prevent the first server from accepting an entity too soon, that
is, while the second server still holds the previous entity.

One way to implement this is to precede the first Single Server block with
an Enabled Gate block that is configured so that the gate is closed when an
entity is in either server. In particular, the gate

• Is open from the beginning of the simulation until the first entity’s
departure from the gate

• Closes whenever an entity advances from the gate to the first server, that
is, when the gate block’s #d output signal increases

• Reopens whenever that entity departs from the second server, that is, when
the second server block’s #d output signal increases

This arrangement is shown below.

The Signal Latch block’s st output signal becomes 0 when the block’s rvc
input signal increases and becomes 1 when the wvc input signal increases.
That is, the st signal becomes 0 when an entity departs from the gate and
becomes 1 when an entity departs from the second server. In summary, the
entity at the head of the queue advances to the first Single Server block if
and only if both servers are empty.

7-5



7 Regulating Arrivals Using Gates

Opening a Gate Instantaneously

In this section...

“Behavior of Release Gate Block” on page 7-6

“Example: Synchronizing Service Start Times with the Clock” on page 7-6

“Example: Opening a Gate Upon Entity Departures” on page 7-7

Behavior of Release Gate Block
The Release Gate block opens instantaneously at a discrete set of times
during the simulation and is closed at all other times. The gate opens when a
signal-based event or a function call occurs. By definition, the gate’s opening
permits one pending entity to arrive if able to advance immediately to the next
block. No simulation time passes between the opening and subsequent closing
of the gate; that is, the gate opens and then closes in the same time instant. If
no entity is already pending when the gate opens, then the gate closes without
processing any entities. It is possible for the gate to open multiple times in a
fixed time instant, if multiple gate-opening events occur in that time instant.

An entity passing through a gate must already be pending before the
gate-opening event occurs. Suppose a Release Gate block follows a Single
Server block and a gate-opening event is scheduled simultaneously with a
service completion event. If the gate-opening event is processed first, then
the gate opens and closes before the entity completes its service, so the entity
does not pass through the gate at that time instant. If the service completion
is processed first, then the entity is already pending before the gate-opening
event is processed, so the entity passes through the gate at that time instant.
To learn more about the processing sequence for simultaneous events, see
Chapter 3, “Managing Simultaneous Events”.

Example: Synchronizing Service Start Times with the
Clock
In the example below, a Release Gate block with an input signal from a Pulse
Generator block ensures that entities begin their service only at fixed time
steps of 1 second, even though the entities arrive asynchronously. In this
example, the Release Gate block has Open gate upon set to Change in
signal from port vc and Type of change in signal value set to Rising,

7-6



Opening a Gate Instantaneously

while the Pulse Generator block has Period set to 1. (Alternatively, you
could set Open gate upon to Trigger from port tr and Trigger type to
Rising.)

The plots below show that the entity generation times can be noninteger
values, but the service beginning times are always integers.

Example: Opening a Gate Upon Entity Departures
In the model below, two queue-server pairs operate in parallel and an entity
departs from the top queue only in response to a departure from the bottom
queue. In particular, departures from the bottom queue block cause the
Entity Departure Function-Call Generatort block to issue a function call,

7-7



7 Regulating Arrivals Using Gates

which in turn causes the gate to open. The Release Gate block in this model
has the Open gate upon parameter set to Function call from port fcn.

If the top queue in the model is empty when the bottom queue has a
departure, then the gate opens but no entity arrives there.

When configuring a gate to open based on entity departures, be sure the logic
matches your intentions. For example, when looking at the model shown
above, you might assume that entities advance through the queue-server pairs
during the simulation. However, if the Output Switch block is configured to
select the first entity output port that is not blocked, and if the top queue
has a large capacity relative to the number of entities generated during the
simulation duration, then you might find that all entities advance to the
top queue, not the bottom queue. As a result, no entities depart from the
bottom queue and the gate never opens to permit entities to depart from the
top queue. By contrast, if the Output Switch block is configured to select
randomly between the two entity output ports, then it is likely that some
entities reach the servers as expected.

Alternative Using Value Change Events
An alternative to opening the gate upon departures from the bottom queue
is to open the gate upon changes in the value of the #d signal output from
that queue block. The #d signal represents the number of entities that have
departed from that block, so changes in the value are equivalent to entity
departures. To implement this approach, set the Release Gate block’s Open
gate upon parameter to Change in signal from port vc and connect the
vc port to the queue block’s #d output signal.

7-8



Adding Gating Logic Using Combinations of Gates

Adding Gating Logic Using Combinations of Gates

In this section...

“Effect of Combining Gates” on page 7-9

“Example: First Entity as a Special Case” on page 7-11

Effect of Combining Gates
You can use multiple gate blocks in combination with each other:

• Using a Release Gate block and/or one or more Enabled Gate blocks in
series is equivalent to a logical AND of their gate-opening criteria. For an
entity to pass through the gates, they must all be open at the same time.
The next figure shows a logical AND of two conditions.

Note Do not connect two Release Gate blocks in series. No entities would
ever pass through such a series of gates because each gate closes before the
other gate opens, even if the gate-opening events occur at the same value of
the simulation clock.

• Using multiple gate blocks in parallel, you can implement a logical OR of
their gate-opening criteria. Use the Output Switch and Path Combiner
blocks as in the figure below and set the Output Switch block’s Switching
criterion parameter to First port that is not blocked.

7-9



7 Regulating Arrivals Using Gates

Each entity attempts to arrive at the first gate; if it is closed, the entity
attempts to arrive at the second gate, and so on. If all gates are closed,
then the Output Switch block’s entity input port is unavailable and the
entity must stay in a preceding block (such as a queue or server preceding
the switch).

Note The figure above uses two Release Gate blocks and one Enabled
Gate block, but you can use whatever combination is suitable for the logic
of your application and whatever sequence you prefer. Also, the figure
above omits the control signals (vc and en) for visual clarity but in your
model these ports must be connected.

The Enabled Gate and Release Gate blocks open and close their gates in
response to updates in their input signals. If you expect input signals for
different gate blocks to experience simultaneous updates, then consider the
sequence in which the application resolves the simultaneous updates. For
example, if you connect an Enabled Gate block to a Release Gate block in
series and the enabled gate closes at the same time that the release gate
opens, then the sequence matters. If the gate-closing event is processed
first, then a pending entity cannot pass through the gates at that time; if
the gate-opening event is processed first, then a pending entity can pass
through the gates before the gate-closing event is processed. To control the
sequence, select the Resolve simultaneous signal updates according to
event priority parameters in the gate blocks and specify appropriate Event

7-10



Adding Gating Logic Using Combinations of Gates

priority parameters. For details, see Chapter 3, “Managing Simultaneous
Events”.

Example: First Entity as a Special Case
This example illustrates the use of a Release Gate block and an Enabled Gate
block connected in parallel. The Release Gate block permits the arrival of the
first entity of the simulation, which receives special treatment, while the
Enabled Gate block permits entity arrivals during the rest of the simulation.
In this example, a warmup period at the beginning of the simulation precedes
normal processing.

The Release Gate block is open precisely when the #d output signal from the
Time-Based Entity Generator block rises from 0 to 1. That is, the gate is open
for the first entity of the simulation and no other entities. The first entity
arrives at an Infinite Server block, which represents the warmup period.

7-11



7 Regulating Arrivals Using Gates

Subsequent entities find the Release Gate block’s entity input port
unavailable, so they attempt to arrive at the Enabled Gate block. The Enabled
Gate block is open during the entire simulation, except when the first entity
has not yet departed from the Infinite Server block. This logic is necessary
to prevent the second entity from jumping ahead of the first entity before
the warmup period is over.

The Path Combiner block merges the two entity paths, removing the
distinction between them. Subsequent processing depends on your
application; this model merely uses a queue-server pair as an example.

The plot below shows which path each entity takes during the simulation. The
plot shows that the first entity advances from the first (Path=1) entity output
port of the Output Switch block to the Release Gate block, while subsequent
entities advance from the second (Path=2) entity output port of the Output
Switch block to the Enabled Gate block.

7-12



8

Forcing Departures Using
Timeouts

• “Role of Timeouts in SimEvents Models” on page 8-2

• “Basic Example Using Timeouts” on page 8-3

• “Basic Procedure for Using Timeouts” on page 8-4

• “Defining Entity Paths on Which Timeouts Apply” on page 8-7

• “Handling Entities That Time Out” on page 8-10

• “Example: Limiting the Time Until Service Completion” on page 8-13



8 Forcing Departures Using Timeouts

Role of Timeouts in SimEvents Models
You can limit the amount of time an entity spends during the simulation
on designated entity paths. Exceeding the limit causes a timeout event and
the entity is said to have timed out. The duration of the time limit is called
the timeout interval.

You might use timeout events to

• Model a protocol that explicitly calls for timeouts.

• Implement special routing or other handling of entities that exceed a time
limit.

• Model entities that represent something perishable.

• Identify blocks in which entities wait too long.

8-2



Basic Example Using Timeouts

Basic Example Using Timeouts
The model below limits the time that each entity can spend in a queue, but
does not limit the time in the server. The queue immediately ejects any entity
that exceeds the time limit. For example, if each entity represents customers
trying to reach an operator in a telephone support call center, then the model
describes customers hanging up the telephone if they wait too long to reach
an operator. If customers reach an operator, they complete the call and do not
hang up prematurely.

Each customer’s arrival at the Schedule Timeout block establishes a time
limit for that customer. Subsequent outcomes for that customer are as follows:

• Entity Times Out — If the customer is still in the queue when the
clock reaches the time limit, the customer hangs up without reaching an
operator. In generic terms, the entity times out, departs from the FIFO
Queue block via the TO port, and does not reach the server.

• Entity Advances to Server — If the customer gets beyond the queue
before the clock reaches the time limit, the customer decides not to hang up
and begins talking with the operator. In generic terms, if the entity arrives
at the Cancel Timeout block before the clock reaches the time limit, the
entity loses its potential to time out because the block cancels a pending
timeout event. The entity then advances to the server.

8-3



8 Forcing Departures Using Timeouts

Basic Procedure for Using Timeouts

In this section...

“Schematic Illustrating Procedure” on page 8-4

“Step 1: Designate the Entity Path” on page 8-5

“Step 2: Specify the Timeout Interval” on page 8-5

“Step 3: Specify Destinations for Timed-Out Entities” on page 8-6

Schematic Illustrating Procedure
This section describes a typical procedure for incorporating timeout events
into your model. The schematic below illustrates the procedure for a
particular topology.

������

������

������

������

������

������

8-4



Basic Procedure for Using Timeouts

Step 1: Designate the Entity Path
Designate the entity path on which you want to limit entities’ time. The
path can be linear, with exactly one initial block and one final block, or the
path can be nonlinear, possibly with multiple initial or final blocks. Insert
Schedule Timeout and Cancel Timeout blocks as follows:

• Insert a Schedule Timeout block before each initial block in the path. The
Schedule Timeout block schedules a timeout event on the event calendar
whenever an entity arrives, that is, whenever an entity enters your
designated path.

• Insert a Cancel Timeout block after each final block in the path, except final
blocks that have no entity output port. The Cancel Timeout block removes
a timeout event from the event calendar whenever an entity arrives, that
is, whenever an entity leaves your designated path without having timed
out. If a final block in the path has no entity output port, then the block
automatically cancels the timeout event.

• Configure the Schedule Timeout and Cancel Timeout blocks with the same
Timeout tag parameter. The timeout tag is a name that distinguishes a
particular timeout event from other timeout events scheduled for different
times for the same entity.

For sample topologies, see “Defining Entity Paths on Which Timeouts Apply”
on page 8-7.

Step 2: Specify the Timeout Interval
Specify the timeout interval, that is, the maximum length of time that the
entity can spend on the designated entity path, by configuring the Schedule
Timeout block(s) you inserted:

• If the interval is the same for all entities that arrive at that block, you can
use a parameter, attribute, or signal input. Indicate your choice using the
the Schedule Timeout block’s Timeout interval from parameter.

• If each entity stores its own timeout interval in an attribute, set
the Schedule Timeout block’s Timeout interval from parameter to
Attribute.

8-5



8 Forcing Departures Using Timeouts

This method is preferable to using the Signal port ti option with a Get
Attribute block connected to the ti port; to learn why, see “Interleaving of
Block Operations” on page 14-36.

• If the timeout interval can vary based on dynamics in the model, set the
Schedule Timeout block’s Timeout interval from parameter to Signal
port ti. Connect a signal representing the timeout interval to the ti port.

If the ti signal is an event-based signal, be sure that its updates occur
before the entity arrives. For common problems and troubleshooting tips,
see “Unexpected Use of Old Value of Signal” on page 13-80.

Step 3: Specify Destinations for Timed-Out Entities
Specify where an entity goes if it times out during the simulation:

• Enable the TO entity output port for some or all queues, servers, and
Output Switch blocks along the entity’s path, by selecting Enable TO port
for timed-out entities on the Timeout tab of the block’s dialog box. In
the case of the Output Switch block, you can select that option only under
certain configurations of the block; see its reference page for details.

If an entity times out while it is in a block possessing a TO port, the entity
departs using that port.

• If an entity times out while it resides in a block that has no TO port,
then the Schedule Timeout block’s If entity has no destination when
timeout occurs parameter indicates whether the simulation halts with an
error or discards the entity while issuing a warning.

Queues, servers, and the Output Switch block are the only blocks that can
possess TO ports. For example, an entity cannot time out from gate or
attribute blocks.

For examples of ways to handle timed-out entities, see “Handling Entities
That Time Out” on page 8-10.

8-6



Defining Entity Paths on Which Timeouts Apply

Defining Entity Paths on Which Timeouts Apply

In this section...

“Linear Path for Timeouts” on page 8-7

“Branched Path for Timeouts” on page 8-8

“Feedback Path for Timeouts” on page 8-8

Linear Path for Timeouts
The next figure illustrates how to position Schedule Timeout and Cancel
Timeout blocks to limit the time on a linear entity path. The linear path
has exactly one initial block and one final block. A Schedule Timeout block
precedes the initial block (LIFO Queue) on the designated entity path, while a
Cancel Timeout block follows the final block (Single Server) on the designated
entity path.

In this example, the Cancel Timeout block is optional because it is connected
to the Entity Sink block, which has no entity output ports. However, you
might want to include the Cancel Timeout block in your own models for clarity
or for its optional output signals.

Other examples of timeouts on linear entity paths include these:

8-7



8 Forcing Departures Using Timeouts

• “Basic Example Using Timeouts” on page 8-3

• “Example: Limiting the Time Until Service Completion” on page 8-13

Branched Path for Timeouts
In the example below, entities from two sources have limited lifespans.
Entities from a third source do not have limited lifespans.

Note When the Replicate block replicates an entity subject to a timeout, all
departing entities share the same expiration time; that is, the timeout events
corresponding to all departing entities share the same scheduled event time.

Feedback Path for Timeouts
In the example below, entities have limited total time in a queue, whether
they travel directly from there to the server or loop back to the end of the
queue one or more times.

8-8



Defining Entity Paths on Which Timeouts Apply

8-9



8 Forcing Departures Using Timeouts

Handling Entities That Time Out

In this section...

“Common Requirements for Handling Timed-Out Entities” on page 8-10

“Techniques for Handling Timed-Out Entities” on page 8-10

“Example: Rerouting Timed-Out Entities to Expedite Handling” on page
8-11

Common Requirements for Handling Timed-Out
Entities
Your requirements for handling entities that time out might depend on your
application or model. For example, you might want to

• Count timed-out entities to create metrics.

• Process timed-out entities specially.

• Discard timed-out entities without reacting to the timeout event in any
other way.

Techniques for Handling Timed-Out Entities
To process or count timed-out entities, use one or more of the following
optional ports of the individual queues, servers, and Output Switch blocks
in the entities’ path. Parameters in the dialog boxes of the blocks let you
enable the optional ports.

Port Description Parameter that Enables
Port

Entity
output
port TO

Timed-out entities depart via
this port, if present.

Enable TO port for
timed-out entities on
Timeout tab

Signal
output
port #to

Number of entities that have
timed out from the block since
the start of the simulation.

Number of entities timed
out on Statistics tab

8-10



Handling Entities That Time Out

To combine paths of timed-out entities from multiple blocks, use a Path
Combiner block.

Note If an entity times out while it is in a block that has no TO port, then
the Schedule Timeout block’s If entity has no destination when timeout
occurs parameter indicates whether the simulation halts with an error or
discards the entity while issuing a warning.

Example: Rerouting Timed-Out Entities to Expedite
Handling
In this example, timeouts and a priority queue combine to expedite the
handling of requests that have waited for a long time in the queue. Requests
initially have priority 3, which is the least important priority level in this
model. If a request remains unprocessed for too long, it leaves the Priority
Queue block via the TO entity output port. Subsequent processing is as
follows:

• A priority-3 request becomes a priority-2 request, the timeout interval
becomes shorter, and the request reenters the priority queue. The queue
places this request ahead of all priority-3 requests already in the queue.

• A priority-2 request becomes a priority-1 request, the timeout interval
remains unchanged, and the request reenters the priority queue. The
queue places this request ahead of all priority-3 and priority-2 requests
already in the queue.

• A priority-1 request, having timed out three times, is discarded.

8-11



8 Forcing Departures Using Timeouts

8-12



Example: Limiting the Time Until Service Completion

Example: Limiting the Time Until Service Completion
In this example, two machines operate in series to process parts. The example
seeks to establish a time limit for the first machine’s completion of active
processing, not including any subsequent time that a part might need to wait
for the second machine to be ready.

A Schedule Timeout block establishes the time limit before the part waits for
the first machine. A Cancel Timeout block cancels the timeout event after
the first machine’s processing is complete. However, placing only a Cancel
Timeout block between the two machines, modeled here as Single Server
blocks, would not accomplish the goal because the part might time out while
it is blocked in the first Single Server block.

The solution is to use a queue to provide a waiting area for the part while it
waits for the second machine, and use a gate to prevent the first machine
from working on a new part until the part has successfully advanced to the
second machine. In the model below, parts always depart from the first Single
Server block immediately after the service is complete; as a result, the time
limit applies precisely to the service completion.

8-13



8 Forcing Departures Using Timeouts

8-14



9

Computations on
Event-Based Signals

• “Choice of Modeling Constructs for Computations” on page 9-2

• “Performing Computations in Atomic Subsystems” on page 9-8

• “Suppressing Computations By Filtering Out Events” on page 9-13

• “Performing Computations in Function-Call Subsystems” on page 9-19

• “Blocks Inside Subsystems with Event-Based Input Signals” on page 9-22

• “Performing Computations Without Using Subsystems” on page 9-23

• “Example: Computation With and Without Atomic Subsystem” on page 9-26



9 Computations on Event-Based Signals

Choice of Modeling Constructs for Computations
Use the table to help you determine whether to perform computations on
event-based signals inside an Atomic Subsystem or Function-Call Subsystem
block or use direct connections to the event-based signals. Your choice affects
the ease of constructing your model, the ease of understanding the simulation
behavior, and the numerical results of the computation.

Tip If you are not sure which approach to use, try the Atomic Subsystem
block first.

If you want to perform the computation in a time-based manner instead of an
event-based manner, convert the signals into time-based signals. For details,
see “Converting Between Time-Based and Event-Based Signals” on page 4-10.

# Condition Atomic Subsystem Function-Call
Subsystem

Direct Connection

1 One or more of the
computational blocks
does not support
event-based input
signals.

Recommended Recommended if any
of conditions 6–10
are also true.

Not applicable

2 The computation
involves only
single-input--
single-output (SISO)
blocks that support
event-based input
signals, and you
want to perform
the computation
immediately upon
each sample time hit
of the event-based
input signal.

Recommended Not applicable Recommended if you
prefer less hierarchy
or fewer blocks in
your model.

9-2



Choice of Modeling Constructs for Computations

# Condition Atomic Subsystem Function-Call
Subsystem

Direct Connection

3 One or more of the
computational blocks
is not a SISO block.

Details

If you do not use an
Atomic Subsystem
or Function-Call
Subsystem block in
this situation, the
execution causality
can be complicated
and you might get
unexpected results.
The additional
work to put the
computational blocks
in the subsystem
makes the simulation
easier to understand
and more likely
to behave as you
intended.

Recommended Recommended if any
of conditions 6–10
are also true.

Not recommended

4 You want to suppress
the computation
for certain kinds of
events in one or more
of the input signals.

Example

Suppose you want
to perform a
computation on a
queue length signal
whenever the queue
length increases,

Recommended

Modeling Tip

Set Type of change
in signal value
in the Event Filter
block.

Recommended if any
of conditions 6–10
are also true.

Not applicable

9-3



9 Computations on Event-Based Signals

# Condition Atomic Subsystem Function-Call
Subsystem

Direct Connection

but not when it
decreases.

5 You want to
prioritize the
computation,
compared to other
simultaneous events,
using the event
calendar.

Recommended

Modeling Tip

Set a priority value in
a Event Filter block
that precedes the
Atomic Subsystem
block.

Recommended if any
of conditions 6–10
are also true.

Modeling Tip

Set a priority value
in a Signal-Based
Function-Call
Generator block
that precedes
the Function-Call
Subsystem block.

Not supported

6 Your computation
and the logic for its
execution involve
signals that fall into
these categories:

• “Control signals”
whose events
should cause the
computation to
execute, but the
computation does
not use the specific
signal values.

• “Data signals” that
provide data but
should not cause
the computation to
execute.

Recommended Recommended Not applicable

9-4



Choice of Modeling Constructs for Computations

# Condition Atomic Subsystem Function-Call
Subsystem

Direct Connection

Example

Suppose you want
to perform a
computation that:

• Executes
whenever a queue
has an arrival or
departure.

• Uses the latest
numerical value
of a discrete-time
signal in your
model, where
it would be
inefficient or
incorrect to
execute the
computation upon
each sample time
hit of this signal.

Think of the
queue-length signal
as a control signal
and the discrete-time
signal as a data
signal.

7 You want to perform
the computation
only when an entity
departs from a
certain block.

Not applicable Recommended Not applicable

9-5



9 Computations on Event-Based Signals

# Condition Atomic Subsystem Function-Call
Subsystem

Direct Connection

8 You want to perform
the computation
upon each function
call from a Stateflow
block or other block.

Not applicable Recommended Not applicable

9 You want behavior
analogous to that
of a triggered
subsystem or enabled
subsystem, but
the inputs are
event-based signals.

Not applicable Recommended

Modeling Tips

Precede a
Function-Call
Subsystem block
by a Signal-Based
Function-Call
Generator block.
Configure the latter
block:

• For triggered
behavior, set
Generate
function call
only upon to
Trigger from
port tr and set
Trigger type.

• For enabled
behavior, select
Suppress
function call
f1 if enable
signal e1 is not
positive. Connect
an enable signal

Not applicable

9-6



Choice of Modeling Constructs for Computations

# Condition Atomic Subsystem Function-Call
Subsystem

Direct Connection

to the e1 signal
input port.

10 You want to delay the
computation relative
to an event-based
signal that causes
the computation.

Example

Suppose you want
to perform a
computation 0.1
second after each
departure or arrival
at a queue.

Not applicable Recommended

Modeling Tips

Precede a
Function-Call
Subsystem block
by a Signal-Based
Function-Call
Generator block.
In the latter block,
select Resolve
simultaneous
signal updates
according to event
priority. Set the
Function-call
delay from
parameter.

Not applicable

9-7



9 Computations on Event-Based Signals

Performing Computations in Atomic Subsystems

In this section...

“When to Use Atomic Subsystems for Computations on Event-Based
Signals” on page 9-8

“How to Set Up Atomic Subsystems for Computations” on page 9-8

“Behavior of Computations in Atomic Subsystems” on page 9-9

“Refining the Behavior” on page 9-10

“Examples That Use Atomic Subsystems” on page 9-12

When to Use Atomic Subsystems for Computations
on Event-Based Signals
In many situations, the clearest and most flexible way to perform a
computation involving event-based signals is to place the computational
blocks inside an Atomic Subsystem block. To learn whether this approach
is appropriate for your situation, see “Choice of Modeling Constructs for
Computations” on page 9-2.

How to Set Up Atomic Subsystems for Computations
The alternate ways to set up atomic subsystems are described in these topics:

• “Creating an Atomic Subsystem by Adding the Atomic Subsystem Block”
on page 9-8

• “Creating an Atomic Subsystem from Existing Blocks” on page 9-9

Creating an Atomic Subsystem by Adding the Atomic
Subsystem Block
If you have not started adding the computational blocks to the model, use the
procedure in “Creating a Subsystem by Grouping Existing Blocks”, with one
change: instead of using the Subsystem block, use the Atomic Subsystem
block.

9-8



Performing Computations in Atomic Subsystems

Creating an Atomic Subsystem from Existing Blocks
If your model already contains a connected set of computational blocks, use
this procedure to convert the set of blocks into a subsystem like that of the
Atomic Subsystem block.

1 Create a virtual subsystem containing the set of blocks. Follow the steps in
“Creating a Subsystem by Grouping Existing Blocks”.

2 Open the subsystem parameters dialog box. With the new subsystem block
selected, select Edit > Subsystem Parameters.

3 Select Treat as atomic unit and click OK. The block outline becomes bold
to indicate that the subsystem is a nonvirtual subsystem.

Behavior of Computations in Atomic Subsystems
When an Atomic Subsystem block has event-based input signals, it behaves
as follows:

• The initial value of each output signal of the subsystem is zero, regardless
of the initial values of the inputs and the blocks inside the subsystem.

• The subsystem executes in any of the circumstances listed in the following
table:

9-9



9 Computations on Event-Based Signals

In the Schematic, if Block A Is... ...And This Occurs

Not the Event Filter block Signal y has a sample time hit
event.

The Event Filter block, with the
Resolve simultaneous signal
updates according to event
priority option cleared

Signal x has a qualifying
signal-based event, according
to the parameters of Block A.

The Event Filter block, with the
Resolve simultaneous signal
updates according to event
priority option selected

The event calendar executes
a subsystem event associated
with Block A. In this case, Block
A previously responded to a
qualifying signal-based event in
signal x by scheduling a subsystem
event on the event calendar.

• Whenever the subsystem executes, all the blocks in the subsystem execute.
In this sense, the computation is an atomic operation. During this atomic
operation, each block executes once, using the current values of its input
signals. The sequence in which the blocks in the subsystem execute
depends on the sorted order that the application determines.

• At any given value of the simulation clock, conditions that cause the
subsystem to execute can occur zero, one, or multiple times. Such flexibility
and aperiodicity are characteristic of discrete-event simulations. Multiple
executions can arise from multiple signal-based events in a single input
signal or from signal-based events in multiple input signals. However,
each signal-based event can execute the subsystem only once, regardless of
whether the signal is scalar or nonscalar.

Refining the Behavior

Initial Value of the Subsystem Output
To establish a nonzero initial value for an output signal of the Atomic
Subsystem block, connect the signal to the Initial Value block.

9-10



Performing Computations in Atomic Subsystems

Types of Events That Cause Subsystem Execution
In the following schematic, if Block A is not the Event Filter block and signal
y is an event-based signal, each sample time hit of the signal causes the
subsystem to execute.

To make the subsystem respond to changes or triggers in this signal instead
of responding to each sample time hit, connect the signal to the Event Filter
block. For details, see “Suppressing Computations By Filtering Out Events”
on page 9-13.

Subsystems Having Multiple Input Ports
If your Atomic Subsystem block has multiple input signals, each signal can
cause the subsystem to execute. For example, in the following schematics, the
subsystem can execute based on signal-based events in signal y1 and signal y2.

9-11



9 Computations on Event-Based Signals

If there is a causal relationship between the events in signal y1 and the
events in signal y2, you might want to refine the logic that determines
when the subsystem executes. You can use techniques in “Suppressing
Computations By Filtering Out Events” on page 9-13. For example, if Block C
always updates signal y1 followed by signal y2, you might want to execute
the subsystem only upon sample time hits of signal y2 but not upon sample
time hits of signal y1.

Examples That Use Atomic Subsystems

• “Example: Computing a Time Average of a Signal” on page 11-9

• “Example: Resetting an Average Periodically” on page 11-12

• “Example: Fraction of Dropped Messages” on page 11-8

• “Example: Observing Service Completions” on page 2-19

9-12



Suppressing Computations By Filtering Out Events

Suppressing Computations By Filtering Out Events

In this section...

“When to Suppress Computations” on page 9-13

“How to Set Up Event Filter Blocks” on page 9-15

“Behavior of Event Filter Blocks” on page 9-17

“Evaluating the Behavior” on page 9-17

“Examples That Use Event Filter Blocks” on page 9-18

When to Suppress Computations
This section describes situations in which you should consider selectively
preventing execution of an Atomic Subsystem block that has event-based
input signals.

Note If the computations that you want to suppress are in a Function-Call
Subsystem block instead of an Atomic Subsystem block, see “Conditionalizing
Events” on page 2-35.

States and Persistent Variables in Computation
When the computation uses persistent variables of a MATLAB function,
Memory blocks, or other blocks with state, consider whether performing the
computation at inappropriate points in the simulation causes it to store the
wrong data for future use or corrupt the state of a block. If that issue affects
your computation, try one of these solutions:

• Introduce additional logic in your model to prevent the subsystem from
executing or prevent it from corrupting a variable or state.

• Use the techniques in “How to Set Up Event Filter Blocks” on page
9-15. The techniques are applicable when you can characterize the
appropriate points at which to perform the computation, in terms of a
type of signal-based event of an input to an Atomic Subsystem block. For
example, suppose increases in a signal value are appropriate points at
which to perform the computation, while other sample time hits are not.

9-13



9 Computations on Event-Based Signals

For an example that uses the solution involving the Event Filter block, see the
model in “Example: Observing Service Completions” on page 2-19. The model
uses a MATLAB function that compares the current and previous values of
the input arguments. At the end, the function stores the current values in
persistent variables, to use (as previous values) in the next invocation of the
function. If the example invoked the function upon irrelevant sample time
hits in the second input argument, the function inappropriately overwrites
the stored values and causes the next invocation of the function to produce
incorrect results. To avoid this issue, the example uses the Event Filter block
to avoid invoking the function when the second input argument has sample
time hits that are not increases in value.

Repeated Execution of Computation
Multiple input signals of an Atomic Subsystem block can cause repeated
executions that might be extraneous, misleading, or incorrect. For example,
in the following schematic, suppose Block C always updates signal y1 followed
by signal y2. The subsystem executes upon the update of signal y1 even
though signal y2 has not been updated yet. The subsystem also executes upon
the update of signal y2, at which point both signal y1 and signal y2 are up
to date. You might want to execute the subsystem only upon the updates of
signal y2, while preventing the execution upon the updates of signal y1.

For a full example, see the model in “Example: Resetting an Average
Periodically” on page 11-12. The model uses a MATLAB function whose
first and second input signals always have simultaneous sample time hits.
If the example invoked the function upon sample time hits in the second
input signal, the first input signal is not yet up to date. As a result, function
produces an incorrect value that would makes the plot look misleading.
To avoid these issues, the example prevents the second input signal from
invoking the function.

9-14



Suppressing Computations By Filtering Out Events

Logic Corresponding to Changes or Triggers
Execute an Atomic Subsystem block when a particular input signal has a
particular type of signal-based event, and not when the signal has other types
of events, as in the following cases:

• When your implementation of the subsystem implicitly assumes that the
signal has had a particular type of event.

• When your model requires the result of the computation only when the
signal has had a particular type of event.

For example, if you want the simulation to respond to worsening backlogs in
a queue by recomputing a routing path, the relevant signal-based events of
the queue length signal are the increases, not decreases or repeated values.
When the queue length increases, perform the computation, thereby avoiding
disrupting the routing when the queue length does not increase.

How to Set Up Event Filter Blocks
The Event Filter block enables you to adjust the behavior of an Atomic
Subsystem block by restricting the type of signal-based events that cause the
subsystem to execute. The restriction applies to the signal that connects to a
particular input port of the Atomic Subsystem block. To apply restrictions to
multiple input ports, use multiple Event Filter blocks.

To set up such a restriction:

1 Locate the Atomic Subsystem input port whose behavior you want to
adjust. Also, locate the signal that provides data for this input port.

2 Insert the Event Filter block into your model. Connect the data signal to
the Event Filter input port. Connect the Event Filter output port to the
Atomic Subsystem input port.

3 Configure the Event Filter block by setting parameters in its dialog box.

9-15



9 Computations on Event-Based Signals

If You Want the
Subsystem to...

Set These Parameters

Execute when the
data signal exhibits a
qualifying signal-based
event, and the signal is
real-valued

• Set Execute atomic subsystem to one of
these values:

– Upon sample time hit

– Upon trigger

– Upon change in signal

In the case of triggers and changes, an
additional parameter lets you specify the
direction of the trigger or change: rising,
falling, or either.

• Select or clear the Resolve simultaneous
signal updates according to event
priority option, depending on whether you
want to prioritize the subsystem execution.
For more information, see “Choosing How to
Resolve Simultaneous Signal Updates” on
page 14-14.

Execute when the
data signal exhibits a
qualifying signal-based
event, and the signal is
complex-valued

• Set Execute atomic subsystem to Upon
sample time hit.

• Select or clear the Resolve simultaneous
signal updates according to event
priority option, depending on whether you
want to prioritize the subsystem execution.
For more information, see “Choosing How to
Resolve Simultaneous Signal Updates” on
page 14-14.

Use the most recent
value of the data signal,
but the signal must not
cause the subsystem to
execute

Set Execute atomic subsystem to Never.

9-16



Suppressing Computations By Filtering Out Events

Behavior of Event Filter Blocks
When the input signal of an Event Filter block has a sample time hit, it does
the following:

1 Updates its output signal with the value of the input signal. This value is
available to the Atomic Subsystem block to which the Event Filter block
connects.

2 Determines whether to execute the Atomic Subsystem block, based on the
settings in the block dialog box of the Event Filter block. If the Event Filter
block is not supposed to execute the Atomic Subsystem block, the Event
Filter does nothing further, until the next sample time hit of the input
signal. Otherwise, processing continues to the next step.

3 Determines when to execute the Atomic Subsystem block.

• If you did not select the Resolve simultaneous signal updates
according to event priority option, the Event Filter block executes
the Atomic Subsystem block immediately.

• If you selected the Resolve simultaneous signal updates according
to event priority option, the Event Filter block schedules an event on
the event calendar. The event time is the current simulation time. The
event priority is the value of the Event priority parameter in the Event
Filter block. When the event calendar executes this event, the Atomic
Subsystem block performs its computation.

The output value of this block might change between the scheduling and
execution of the atomic subsystem event. This change causes the atomic
subsystem to always use the most recent output value for its execution.
The atomic subsystem uses a new value for the execution instead of the
intended values that caused the signal update, leading to repeated output
values. To resolve this issue, in the Event Filter dialog box, clear the
Resolve simultaneous signal updates according to event priority
check box. This warning appears for this block once per simulation even
if the inconsistency recurs.

Evaluating the Behavior
Use the SimEvents debugger to examine any of these occurrences:

9-17



9 Computations on Event-Based Signals

• A signal-based event causes an Atomic Subsystem block to execute
immediately.

• An Event Filter block schedules an event to execute the subsystem.

• An Event Filter block suppresses execution of the subsystem because a
signal-based event is not a qualifying event.

You can also use the Instantaneous Event Counting Scope to view
signal-based events of these signals:

• Input signal to an Event Filter block

• Input signal to an Atomic Subsystem block, when the signal is not the
output of a Event Filter block

Examples That Use Event Filter Blocks

• “Example: Resetting an Average Periodically” on page 11-12

• “Example: Observing Service Completions” on page 2-19

• “Example: Effects of Specifying Event Priorities” on page 3-26

9-18



Performing Computations in Function-Call Subsystems

Performing Computations in Function-Call Subsystems

In this section...

“When to Use Function-Call Subsystems for Computations on Event-Based
Signals” on page 9-19

“How to Set Up Function-Call Subsystems for Computations” on page 9-19

“Behavior of Computations in Function-Call Subsystems” on page 9-20

“Refining the Behavior” on page 9-21

“Examples That Use Function-Call Subsystems” on page 9-21

When to Use Function-Call Subsystems for
Computations on Event-Based Signals
In some situations, the most appropriate way to implement a numerical
computation involving event-based signals is to place the computational
blocks inside the Function-Call Subsystem block. When using this block, set
the Sample time type parameter of the Trigger block to triggered. To
learn whether this approach is appropriate for your situation, see “Choice of
Modeling Constructs for Computations” on page 9-2.

How to Set Up Function-Call Subsystems for
Computations

1 From the Ports & Subsystems library library, copy the Function-Call
Subsystem block from the Simulink into your model.

2 Open the Function-Call Subsystem block by double-clicking it. Initially,
the subsystem contains:

• An Inport block connected to an Outport block. The Inport block
represents an input signal that provides data but does not cause the
subsystem to execute.

• A block labeled “function”. This block represents a function-call signal
that causes the subsystem to execute.

9-19



9 Computations on Event-Based Signals

3 In the empty Function-Call Subsystem window, create the contents of
the subsystem. Use Inport blocks to represent input from outside the
subsystem that provides data but does not cause the subsystem to execute.
Use Outport blocks to represent external output. To learn which blocks are
suitable for use inside the subsystem, see “Blocks Inside Subsystems with
Event-Based Input Signals” on page 9-22.

4 At the upper level of your model hierarchy, create or identify the
function-call signal that causes the subsystem to execute. To create this
signal, you might need to do any of the following:

• Convert a function-call signal that originates from a Stateflow block or a
block in the Simulink library set into an event-based function-call signal,
using the Timed to Event Function-Call block.

• Create a function-call signal that indicates the occurrence of signal-based
events or entity departure events. Use the Signal-Based Function-Call
Generator or Entity Departure Function-Call Generator block.

• Create a union of function-call signals using the Mux block.

5 Connect data signals to the ports that correspond to the Inport blocks
inside the subsystem. Connect the function-call signal to the port labeled
function().

Behavior of Computations in Function-Call
Subsystems
When a Function-Call Subsystem block has event-based input signals, it
behaves as follows:

• The initial value of each output signal of the subsystem comes from the
Initial output parameter of the corresponding Outport block inside the
subsystem. Even if there is no function call to invoke the subsystem at T =
0, the Outport block creates a sample time hit for the initial value.

• The subsystem executes whenever the function-call input signal has a
function call. Sample time hits of the data input signals of the subsystem
do not cause the subsystem to execute and do not cause sample time hits
of the output signals.

• Whenever the subsystem executes, all the blocks in the subsystem execute
once, using the current values of their input signals. The sequence in

9-20



Performing Computations in Function-Call Subsystems

which the blocks in the subsystem execute depends on the sorted order that
the application determines.

• At any given value of the simulation clock, conditions that cause the
subsystem to execute can occur zero, one, or multiple times. Such flexibility
and aperiodicity are characteristic of discrete-event simulations.

Refining the Behavior

Initial Value of the Subsystem Output
To change the initial value for an output signal of the subsystem, change the
Initial output parameter of the corresponding Outport block.

Timing of Function Calls Versus Signal Updates
If your function-call signal executes the Function-Call Subsystem block before
all the data signals are up to date, try prioritizing the function-call signal. By
doing so, you defer the subsystem execution relative to other simultaneous
events, such as signal updates. To prioritize a function-call signal, insert
a Signal-Based Event to Function-Call Event block and configure it as in
“Example: Generating a Function Call with an Event Priority” on page 2-34.

Suppressing Computations Selectively
To prevent certain function calls in the function-call signal from executing
the Function-Call Subsystem block, use the techniques in “Conditionalizing
Events” on page 2-35.

Examples That Use Function-Call Subsystems

• Dynamic Voltage Scaling Using Online Gradient Estimation demo

• “Example: Choosing the Shortest Queue” on page 6-10

• “Example: Detecting Changes in the Last-Updated Signal” on page 14-43

9-21



9 Computations on Event-Based Signals

Blocks Inside Subsystems with Event-Based Input Signals
When an atomic subsystem or function-call subsystem has event-based
input signals, the subsystem has a restricted set of possible contents. The
subsystem can contain:

• Blocks having a Sample time parameter of -1, which indicates that
the sample time is inherited from the driving block. An exception is the
Discrete-Time Integrator block.

• Blocks that always inherit a sample time from the driving block, such as
the Bias block. An exception is the Merge block. To determine whether a
block in one of the Simulink libraries inherits its sample time from the
driving block, see the “Characteristics” table near the end of the block
online reference page.

• Blocks whose outputs cannot change from their initial values during a
simulation. For more information, see “Constant Sample Time” in the
Simulink documentation.

The subsystem cannot contain:

• Continuous-time blocks

• Discrete-time blocks with a Sample time parameter value that is positive
and finite, and the Discrete-Time Integrator block with any sample time

• Blocks from the SimEvents libraries. In particular, a nonvirtual subsystem
cannot contain blocks that possess entity ports.

• Merge block

In some cases, you can work around these restrictions by entering a Sample
time parameter value of -1 or by finding a discrete-time analogue of a
continuous-time block. For example, instead of using the continuous-time
Clock block, use the discrete-time Digital Clock block with a Sample time
parameter value of -1.

9-22



Performing Computations Without Using Subsystems

Performing Computations Without Using Subsystems

In this section...

“When to Perform Computations on Event-Based Signals Without Using
Subsystems” on page 9-23

“How to Set Up Blocks for Computations” on page 9-23

“Behavior of Computations” on page 9-23

“Refining the Behavior” on page 9-24

“Examples That Perform Computations Without Using Subsystems” on
page 9-25

When to Perform Computations on Event-Based
Signals Without Using Subsystems
In some situations, you can perform computations on an event-based signal
by connecting it directly to computational blocks, without putting the
blocks in an Atomic Subsystem or Function-Call Subsystem block. Direct
connections make the model easier to construct. However, the absence of a
nonvirtual subsystem can make the behavior more complicated and difficult to
understand. To learn whether this approach is appropriate for your situation,
see “Choice of Modeling Constructs for Computations” on page 9-2. To learn
whether the direct connection is valid for the blocks that you want to use, see
“Blocks That Support Event-Based Input Signals” on page 14-48.

How to Set Up Blocks for Computations
Insert computational blocks into your model and connect them directly to
event-based signals. If the block has a Sample time parameter in the block
dialog box, you must set Sample time to -1 to indicate an inherited sample
time.

Behavior of Computations
When a connected set of computational blocks has event-based input signals,
the behavior depends on whether the blocks are in a nonvirtual subsystem,
such as an Atomic Subsystem or Function-Call Subsystem block.

9-23



9 Computations on Event-Based Signals

• When a nonvirtual subsystem executes, the application determines an
execution sequence that accounts for data dependencies among the blocks.
Each block in the subsystem executes once, in that predetermined sequence.

• Without the nonvirtual subsystem, event-based input signals execute
blocks upon the sample time hits of those input signals. Different blocks in
the connected set might execute different numbers of times. The execution
sequence is not predetermined.

For an example that compares the behavior of a computation with and
without a nonvirtual subsystem, see “Example: Computation With and
Without Atomic Subsystem” on page 9-26.

For details about how blocks behave when they have event-based input
signals and are not in a nonvirtual subsystem, see “Execution of Blocks
Having Event-Based Input Signals” on page 14-2.

Refining the Behavior

Initial Value of Event-Based Signals
To change the initial value for any event-based signal that is not in a
nonvirtual subsystem, connect the signal to the Initial Value block.

Migrating from Direct Connections to Atomic Subsystem
As you build your model, it might evolve from a situation in which direct
connections of event-based signals to computational blocks is appropriate, to
a situation in which it is better to perform the computation in an Atomic
Subsystem block. Be alert to changes that your computation involves a block
that has any of these characteristics:

• The block has multiple input ports.

• The block does not support event-based input signals.

• You do not want the block to respond immediately to each sample time
hit of each event-based input signal.

To migrate your computation to an Atomic Subsystem block, see “Creating an
Atomic Subsystem from Existing Blocks” on page 9-9.

9-24



Performing Computations Without Using Subsystems

Examples That Perform Computations Without Using
Subsystems

• “Example: Detecting Collisions by Comparing Events” on page 2-22

• “Example: Computation With and Without Atomic Subsystem” on page 9-26

9-25



9 Computations on Event-Based Signals

Example: Computation With and Without Atomic
Subsystem

This example compares two techniques for computing (u–1)/(u+1), where
u is an event-based signal.

The next model performs the computation at the top level of the model
hierarchy. During the simulation, one Bias block executes first, and the
update in its output signal causes the Divide block to execute. Afterward,
the other Bias block executes, and the update in its output signal causes
the Divide block to execute. For each sample time hit of the #d signal, the
Divide block produces two values: an interim value followed by a correct final
result. (If the top Bias block executes first, the computation also produces a
division-by-zero warning at the beginning of the simulation.)

Computation at Top Level of Model

By contrast, the next model contains the two Bias blocks and the Divide block
in an Atomic Subsystem block. During the simulation, each of the three
blocks executes once, so the subsystem does not produce an interim value.
Both Bias blocks execute before the Divide block executes, which is required
for mathematical correctness.

9-26



Example: Computation With and Without Atomic Subsystem

Computation in Atomic Subsystem

9-27



9 Computations on Event-Based Signals

9-28



10

Plotting Data

• “Choosing and Configuring Plotting Blocks” on page 10-2

• “Working with Scope Plots” on page 10-10

• “Using Plots for Troubleshooting” on page 10-12

• “Example: Plotting Entity Departures to Verify Timing” on page 10-13

• “Example: Plotting Event Counts to Check for Simultaneity” on page 10-15



10 Plotting Data

Choosing and Configuring Plotting Blocks

In this section...

“Sources of Data for Plotting” on page 10-2

“Comparison of Blocks for Plotting Signals Against Time” on page 10-3

“Inserting and Connecting Scope Blocks” on page 10-5

“Connections Among Points in Plots” on page 10-6

“Varying Axis Limits Automatically” on page 10-7

“Caching Data in Scopes” on page 10-8

“Examples Using Scope Blocks” on page 10-8

Sources of Data for Plotting
The table below indicates the kinds of data you can plot using various
combinations of blocks and parameter values. To view or set the parameters,
open the dialog box using the Parameters toolbar button in the plot window.

Data Block Parameter

Scalar signal vs. time Signal Scope X value from = Event time

Scalar signal vs. time Scope

Scalar signal values without
regard to time

Signal Scope X value from = Index

Two scalar signals (X-Y plot) X-Y Signal Scope

Attribute vs. time Attribute Scope X value from = Event time

Attribute values without regard
to time

Attribute Scope X value from = Index

Two attributes of same entity
(X-Y plot)

X-Y Attribute Scope

10-2



Choosing and Configuring Plotting Blocks

Data Block Parameter

Attribute vs. scalar signal

Scalar signal vs. attribute

Get Attribute
block to assign the
attribute value to a
signal; followed by
X-Y Signal Scope

Number of entity arrivals per
time instant

Instantaneous
Entity Counting
Scope

Number of events per time
instant

Instantaneous Event
Counting Scope

Comparison of Blocks for Plotting Signals Against
Time
The following table compares the capabilities of two blocks for plotting an
event-based signal against time.

Capability Signal Scope Block
(SimEvents Sinks
library)

Scope Block
(Simulink Sinks
library)

Includes markers to
show sample time hits

Yes No

Creates stair plots Yes (default plot) Yes

Creates stem plots Yes (alternative to stair
plot)

No

Creates continuous
plots

Yes (alternative to stair
plot)

No

Plots nonscalar signals No Yes

Plots multiple signals
per window

No Yes

Supports event-based
signals

Yes Yes

10-3



10 Plotting Data

Capability Signal Scope Block
(SimEvents Sinks
library)

Scope Block
(Simulink Sinks
library)

Supports time-based
signals

No Yes

Supports data types
other than double

No Yes

Available as a viewer No Yes

Markers in the Signal Scope plot are especially useful when your event-based
signal:

• Assumes zero-duration values

• Assumes the same value in consecutive sample time hits at different times

The following plots of the same event-based signal illustrate the additional
information that markers provide.

Signal Scope Plot with Markers

10-4



Choosing and Configuring Plotting Blocks

Scope Plot Without Markers

Inserting and Connecting Scope Blocks
The following table indicates the number, kind, and meaning of the input
ports on each scope block.

Block Input Ports Port Description

Signal Scope One signal input port Signal representing the data to plot

Scope One signal input port Signal representing the data to plot

X-Y Signal Scope Two signal input ports Signals representing the data to plot

Attribute Scope One entity input port Entities containing the attribute
value to plot

X-Y Attribute Scope One entity input port Entities containing the attribute
values to plot

Instantaneous Entity Counting
Scope

One entity input port Entities whose arrivals the block
counts

Instantaneous Event Counting
Scope

One signal input port Signal whose signal-based events or
function calls the block counts

10-5



10 Plotting Data

The following figure shows some typical arrangements of scope blocks in
a model. Notice that the blocks that have entity input ports can have
optional entity output ports, and that signal lines can branch whereas entity
connection lines cannot.

Connections Among Points in Plots
You can configure certain scope blocks in the SimEvents Sinks library to
determine whether and how the block connects the points that it plots. The
following table indicates the options. To view or change the parameter
settings, open the dialog box using the Parameters toolbar button in the plot
window.

Connection Characteristics Setting Sample Plot

Stairstep across, then up or down.
Also known as a zero-order hold.

Plot type = Stair in the
block dialog box

Vertical line from horizontal axis to
point. No connection with previous
or next plotted point. Also known
as a stem plot.

Plot type = Stem in the block
dialog box

10-6



Choosing and Configuring Plotting Blocks

Connection Characteristics Setting Sample Plot

Line segment from point to point.
Also known as a first-order hold.

Plot type = Continuous in
the block dialog box

No connection with other points or
with axis. Also known as a scatter
plot.

Style > Line > None in the
plot window

Note If no initial output, data value, or arriving entity indicates a value to
plot at T=0, the plot shows no point at T=0. In this case, the plot does not
connect the first plotted point to the T=0 edge of the plot.

Varying Axis Limits Automatically
Using parameters on the Axes tab of the dialog box of scope blocks in the
SimEvents Sinks library, you set the initial limits for the axes of the plot.
Also, these parameters let you choose how the block responds when a point
does not fit within the current axis limits:

• If X value is beyond limit

• If Y value is beyond limit

Choices for the parameters are in the table.

10-7



10 Plotting Data

Option Description

Stretch axis limits Maintain one limit while doubling the size of the
displayed interval (without changing the size of
the containing plot window)

Keep axis limits
unchanged

Maintain both limits, which means that points
outside the limits do not appear

Shift axis limits Maintain the size of the displayed interval while
changing both limits

Other operations can still affect axis limits, such as the autoscale, zoom, and
pan features.

To store the current limits of both axes for the next simulation, select
Axes > Save axes limits from the plot window menu.

Caching Data in Scopes
The Data History tab of the dialog box of scope blocks in the SimEvents
Sinks library lets you balance data visibility with simulation efficiency.
Parameters on the Data History tab determine how how much data the
blocks cache during the simulation. Caching data lets you view it later,
even if the scope is not open during the simulation. Caching less or no data
accelerates the simulation and uses less memory.

If you set the Store data when scope is closed parameter to Limited,
uncached data points disappear when:

• The simulation ends

• You interact with the plot after pausing the simulation (using
Simulation > Pause, for example)

Examples Using Scope Blocks
The following examples use scope blocks to create different kinds of plots:

10-8



Choosing and Configuring Plotting Blocks

Example Description

“Plotting the Queue-Length Signal”
and “Observations from Plots”
in the SimEvents getting started
documentation

Stairstep and continuous plots of
statistical signals

“Example: Round-Robin Approach to
Choosing Inputs” in the SimEvents
getting started documentation

Stem plot of data from an attribute

“Example: Preemption by
High-Priority Entities” on page
5-11

Unconnected plot of a signal using
dots

“Example: Setting Attributes” on
page 1-8

Stairstep plots of data from
attributes using Attribute Scope
blocks as sinks

“Example: Synchronizing Service
Start Times with the Clock” on page
7-6

Stem plots that count entities using
Instantaneous Entity Counting
Scope blocks with entity output ports

X-Y Signal Scope reference page Continuous plot of two signals

X-Y Attribute Scope reference page Unconnected plot of two attributes
using x’s as plotting markers

10-9



10 Plotting Data

Working with Scope Plots

In this section...

“Customizing Plots” on page 10-10

“Exporting Plots” on page 10-11

Customizing Plots
After a scope block in the SimEvents Sinks library opens its plot window,
you can modify several aspects of the plot by using the menu and toolbar of
the plot window:

• Axes > Autoscale resizes both axes to fit the range of the data plus some
buffer space.

• The Zoom In and Zoom Out toolbar buttons change the axes as described in
the MATLAB documentation about zooming in 2-D views.

• The Pan toolbar button moves your view of a plot.

• The Style menu lets you change the line type, marker type, and color of
the plot. (You can also select Style > Line > None to create a plot of
unconnected points.) Your changes become part of the block configuration
and persist across sessions when you save the model.

• Axes > Save axes limits updates the following parameters on the Axes
tab of the block dialog box to reflect the current limits of the axes:

- Initial X axis lower limit

- Initial X axis upper limit

- Initial Y axis lower limit

- Initial Y axis upper limit

• Axes > Save position updates the Position parameter on the Figure tab
of the block dialog box to reflect the current position and size of the window.

10-10



Working with Scope Plots

Note Some menu options duplicate the behavior of a parameter in the block
dialog box. In this case, selecting the menu option replaces the corresponding
parameter value in the dialog. You can still edit the parameter values in the
dialog manually. An example of a duplicate pair of menu option and dialog
box parameter is Show grid.

Exporting Plots
The Save Figure toolbar button lets you export the current state of the plot
to a file:

• Exporting to a FIG-file enables you to reload it in a different MATLAB
software session. Reloading the file opens a new plot. The new plot is not
associated with the original scope block. The new plot does not offer the
same menu and toolbar options as in the original plot window.

• Exporting to a graphics file enables you to insert the graphic into a
document.

10-11



10 Plotting Data

Using Plots for Troubleshooting
Here are typical ways to use plotting blocks in the SimEvents Sinks library to
troubleshoot problems.

Technique Example

Check when an entity departs from
the block. To do this, plot the #d
output signal of the block.

“Example: Plotting Entity
Departures to Verify Timing”
on page 10-13

Check whether operations such as
service completion or routing are
occurring as you expect. To do this,
plot statistical output signals such
as pe or last, if applicable.

Check whether a block uses a
control signal as you expect. To
do this, plot input signals such
as port selection, service time, or
intergeneration time, and compare
the values with observations of how
the corresponding blocks use those
signals.

“Example: Choices of Values for
Event Priorities” on page 3-11

Check how long entities spend in a
region of the model. To do this, plot
the output of a Read Timer block.

“Example: M/M/5 Queuing System”
on page 5-17

Check whether events you expect
to be simultaneous are, in fact,
simultaneous. To do this, use the
Instantaneous Entity Counting
Scope or Instantaneous Event
Counting Scope block.

“Example: Counting Simultaneous
Departures from a Server” on page
1-21 and “Example: Plotting Event
Counts to Check for Simultaneity”
on page 10-15

10-12



Example: Plotting Entity Departures to Verify Timing

Example: Plotting Entity Departures to Verify Timing
This example shows how to verify the timing of a gate opening graphically.
The model opens a gate at a random time and leaves the gate open for the
rest of the simulation.

By using the zoom feature of the scope, you can compare the time at which
entities depart from the Enabled Gate block with the random time shown
on the Display block in the model.

10-13



10 Plotting Data

Details about the model

The modeling approach views the random opening of the gate as a discrete
event, and models it via an entity departure from a server at a random time.
The Time-Based Entity Generator block generates exactly one entity, at T=0.
The Single Server block delays the entity for the amount of time indicated
by the Uniform Random Number block, 3.531 s in this case. At T=3.531, the
entity arrives at the Entity Sink block. This time is exactly when the #a signal
of the sink block changes from 0 to 1, which in turn causes the gate to open.

10-14



Example: Plotting Event Counts to Check for Simultaneity

Example: Plotting Event Counts to Check for Simultaneity
The example below suggests how to use the Instantaneous Event Counting
Scope block to determine whether events you want to be simultaneous are
truly simultaneous.

Suppose you want two entity generators with periods of 1 and 1/3 to create
simultaneous entity departures every second, so that event priorities
determine which entity arrives at the queue first. By counting events at each
value of time and checking when the count is 2, you can confirm that two
entity generation events are truly simultaneous.

The model below uses two Event-Based Entity Generator blocks receiving
the same input signal. You can see from the plot that simultaneous events
occur every second, as desired.

10-15



10 Plotting Data

Although this example uses the Instantaneous Event Counting Scope to plot a
#d signal, you can alternatively use the Instantaneous Entity Counting Scope
to count entities departing from the Path Combiner block.

10-16



11

Using Statistics

• “Statistics for Data Analysis” on page 11-2

• “Statistics for Run-Time Control” on page 11-3

• “Statistical Tools for Discrete-Event Simulation” on page 11-4

• “Accessing Statistics from SimEvents Blocks” on page 11-5

• “Deriving Custom Statistics” on page 11-7

• “Measuring Point-to-Point Delays” on page 11-18

• “Varying Simulation Results by Managing Seeds” on page 11-24

• “Regulating the Simulation Length” on page 11-30



11 Using Statistics

Statistics for Data Analysis
The purpose of creating a discrete-event simulation is often to improve
understanding of the underlying system or guide decisions about the
underlying system. Numerical results gathered during simulation can be
important tools. For example:

• If you simulate the operation and maintenance of equipment on an
assembly line, you might use the computed production and defect rates to
help decide whether to change your maintenance schedule.

• If you simulate a communication bus under varying bus loads, you might
use computed average delays in high- or low-priority messages to help
determine whether a proposed architecture is viable.

When you design the statistical measures that you use to learn about the
system, consider these questions:

• Which statistics are meaningful for your investigation or decision?
For example, if you are trying to maximize efficiency, then what is an
appropriate measure of efficiency in your system? As another example,
does a mean give the best performance measure for your system, or is it
also worthwhile to consider the proportion of samples in a given interval?

• How can you compute the desired statistics? For example, do you need to
ignore any transient effects, does the choice of initial conditions matter,
and what stopping criteria are appropriate for the simulation?

• To ensure sufficient confidence in the result, how many simulation runs do
you need? One simulation run, no matter how long, is still a single sample
and probably inadequate for valid statistical analysis.

For details concerning statistical analysis and variance reduction
techniques, see the works [7], [4], [1], and [2] listed in “Selected
Bibliography” in the SimEvents getting started documentation.

11-2



Statistics for Run-Time Control

Statistics for Run-Time Control
Some systems rely on statistics to influence the dynamics. For example, a
queuing system with discouraged arrivals has a feedback loop that adjusts
the arrival rate throughout the simulation based on statistics reported by the
queue and server, as illustrated in the Queuing System with Discouraged
Arrivals demo.

When you create simulations that use statistical signals to control the
dynamics, you must have access to the current values of the statistics at key
times throughout the simulation, not just at the end of the simulation. Some
questions to consider while designing your model are:

• Which statistics are meaningful, and how should they influence the
dynamics of the system?

• How can you compute the desired statistics at the right times during the
simulation? It is important to understand when SimEvents blocks update
each of their statistical outputs and when other blocks can access the
updated values. For more information, see Chapter 4, “Working with
Signals”.

• Do you need to account for initial conditions or extreme values in any
special way? For example, if your control logic involves the number of
entities in a queue, then be sure that the logic is sound even when the
queue is empty or full.

• Will small perturbations result in large changes in the system’s behavior?
When using statistics to control the model, you might want to monitor those
statistics or other statistics to check whether the system is undesirably
sensitive to perturbations.

11-3



11 Using Statistics

Statistical Tools for Discrete-Event Simulation
The table lists components that SimEvents models commonly use to gather
or compute statistics.

Statistical Information Available Tools More Information

Number of entities in a
queue or server

#n output signal from queue and
server blocks

“Accessing Statistics from
SimEvents Blocks” on page 11-5

Utilization of a server util output signal from Single
Server and N-Server blocks

“Accessing Statistics from
SimEvents Blocks” on page 11-5

Number of entities that
have departed from a
block

• #d output signal from various
SimEvents blocks

• Entity Departure Counter

• Instantaneous Entity Counting
Scope

• “Accessing Statistics from
SimEvents Blocks” on page
11-5

• “Counting Entities” on page
1-20

Amount of time entities
spend in a block or region
(point-to-point delay)

• Start Timer

• Read Timer

“Measuring Point-to-Point
Delays” on page 11-18

Events on a signal, such
as changes in value

• Instantaneous Event Counting
Scope

• Signal-Based Function-Call
Event Generator

“Example: Plotting Event Counts
to Check for Simultaneity” on
page 10-15

Custom computation on
event-based signals

• Atomic Subsystem

• MATLAB Function

• Event Filter

• Attribute Function

• Stateflow Chart*

• “Deriving Custom Statistics”
on page 11-7

• Chapter 9, “Computations on
Event-Based Signals”

• “Manipulating Attributes of
Entities” on page 1-12

• Chapter 12, “Using Stateflow
Charts in SimEvents Models”

11-4



Accessing Statistics from SimEvents® Blocks

Accessing Statistics from SimEvents Blocks
Most SimEvents blocks can produce one or more statistical output signals.

This procedure shows you how to access a statistical output signal for a given
SimEvents block.

1 Determine which statistical output signal you want to access and find the
associated parameter in the block dialog box. To see which statistics are
available, open the block dialog box. In most cases, the list of available
statistics appears as a list of parameters on the Statistics tab of the dialog
box. In cases where the dialog box has no Statistics tab, such as the Entity
Sink block, the dialog box has so few parameters that the parameters
associated with statistics are straightforward to locate.

2 Select the check box. After you apply the change, the block has a new
signal output port corresponding to that statistic.

3 Connect the new signal output port to the signal input port of another
block. The table lists some common examples.

11-5



11 Using Statistics

If You Want to... Use this Block...

Create a plot using the statistic. Signal Scope or X-Y Signal Scope

Show the statistic on the block icon
throughout the simulation.

Display

Write the data set to the MATLAB
workspace when the simulation
stops or pauses. To learn more,
see “Sending Data to the MATLAB
Workspace” on page 4-17.

Discrete Event Signal to Workspace

Perform custom data processing.
See “Deriving Custom Statistics”
on page 11-7 for some specific
examples.

Custom subsystem or
computational block

For more information about when SimEvents blocks update their statistical
signals and when other blocks react to the updated values, see Chapter 4,
“Working with Signals”.

11-6



Deriving Custom Statistics

Deriving Custom Statistics

In this section...

“Overview of Approaches to Custom Statistics” on page 11-7

“Graphical Block-Diagram Approach” on page 11-7

“Coded Approach” on page 11-8

“Post-Simulation Analysis” on page 11-8

“Example: Fraction of Dropped Messages” on page 11-8

“Example: Computing a Time Average of a Signal” on page 11-9

“Example: Resetting an Average Periodically” on page 11-12

Overview of Approaches to Custom Statistics
You can use the built-in statistical signals from SimEvents blocks to derive
more specialized or complex statistics that are meaningful in your model.
One approach is to compute statistics during the simulation. You can
implement your computations using a graphical block-diagram approach or a
nongraphical coded approach. Alternatively, you can compute statistics after
the simulation is complete.

Graphical Block-Diagram Approach
The Math Operations library in the Simulink library set and the Statistics
library in the DSP System Toolbox™ library set can help you compute
statistics using blocks. For examples using Simulink blocks, see

• “Example: Fraction of Dropped Messages” on page 11-8

• “Example: Detecting Changes in the Last-Updated Signal” on page 14-43,
which computes the ratio of an instantaneous queue length to its long-term
average

• The function-call subsystem within the DVS Optimizer subsystem in the
Dynamic Voltage Scaling Using Online Gradient Estimation demo

• The Arrival Rate Estimation Computation subsystem within the Arrival
Rate Estimator subsystem in the Building an Arrival Rate Estimator demo

11-7



11 Using Statistics

Coded Approach
The blocks in the User-Defined Functions library in the Simulink library set
can help you compute statistics using code. For examples using the MATLAB
Function block, see

• “Example: Computing a Time Average of a Signal” on page 11-9

• “Example: Resetting an Average Periodically” on page 11-12

Post-Simulation Analysis
You can use the Discrete Event Signal to Workspace block to log data to the
MATLAB workspace and compute statistics after the simulation is complete.

Example: Fraction of Dropped Messages
The example below shows how to compute a ratio of event-based signals in
a subsystem that executes when either signal has a sample time hit. The
Output Switch block either transmits or drops the message corresponding to
each entity. The goal is to compute the fraction of dropped messages, that
is, the fraction of entities that depart via OUT2 as opposed to OUT1 of the
Output Switch block.

Upper-Level System

11-8



Deriving Custom Statistics

Subsystem Contents

Two Entity Sink blocks produce #a signals that indicate how many messages
the communication link transmits or drops, respectively. The subsystem
divides the number of dropped messages by the sum of the two #a signals.
Because the subsystem performs the division only when one of the #a signals
increases, no division-by-zero instances occur.

Example: Computing a Time Average of a Signal
This example illustrates how to compute a time average of a signal using the
MATLAB Function block, and especially how to make the block retain data
between calls to the function.

The model below implements a simple queuing system in which the FIFO
Queue produces the output signals

• #n, the instantaneous length of the queue

• len, the time average of the queue length; this is the time average of #n.

11-9



11 Using Statistics

Top-Level Model

The subsystem uses #n to compute the time average. In this case, the time
average should equal len. You can use a similar subsystem in your own
models to compute the time averages of other signals.

Computation of the Time Average
In the example, the subsystem performs computations each time a customer
arrives at or departs from the queue. Within the subsystem, the MATLAB
Function block keeps a running weighted sum of the #n values that form the
input, where the weighting is based on the length of time over which the
signal assumes each value.

The block uses persistent variables for quantities whose values it must retain
from one invocation to the next, namely, the running weighted sum and the
previous values of the inputs.

11-10



Deriving Custom Statistics

Below are the subsystem contents and the function that the MATLAB
Function block represents.

Subsystem Contents

function y = timeavg(u,t)
%TIMEAVG Compute time average of input signal U
% Y = TIMEAVG(U,T) computes the time average of U,
% where T is the current simulation time.

% Declare variables that must retain values between iterations.
persistent running_weighted_sum last_u last_t;

% Initialize persistent variables in the first iteration.
if isempty(last_t)

running_weighted_sum = 0;
last_u = 0;
last_t = 0;

end

% Update the persistent variables.
running_weighted_sum = running_weighted_sum + last_u*(t-last_t);
last_u = u;
last_t = t;

% Compute the outputs.
if t > 0

y = running_weighted_sum/t;
else

y = 0;
end

11-11



11 Using Statistics

Verifying the Result
After running the simulation, you can verify that the computed time average
of #n is equal to len.

isequal([len.time, len.signals.values],...
[len_computed.time, len_computed.signals.values])

The output indicates that the comparison is true.

ans =

1

Example: Resetting an Average Periodically
This example illustrates how to compute a sample mean over each of a series
of contiguous time intervals of fixed length, rather than the mean over the
entire duration of the simulation. The example simulates a queuing system
for 4 weeks’ worth of simulation time, where customers have access to one
server during the first 2 days of the week and five servers on the other days of
the week. The average waiting time for customers over a daily cycle depends
on how many servers are operational that day. However, you might expect
the averages taken over weekly cycles to be stable from one week to the next.

The model below uses a time-based Repeating Sequence Stair block to
determine whether entities advance to a Single Server or N-Server block,
thus creating variations in the number of operational servers. The Start
Timer and Read Timer blocks compute each entity’s waiting time in the
queuing system. A computational subsystem processes the waiting time by
computing a running sample mean over a daily or weekly cycle, as well as
the final sample mean for each cycle. Details about this subsystem are in
“Computation of the Cycle Average” on page 11-15.

11-12



Deriving Custom Statistics

Top-Level Model

Performance of Daily Averages
When considering daily cycles, you can see that the cycle averages do not
stabilize at a single value.

11-13



11 Using Statistics

Performance of Weekly Averages
When considering weekly cycles, you can see less variation in the cycle
averages because each cycle contains the same pattern of changing service
levels. To compute the cycle average over a weekly cycle, change the Period
parameter in the Time-Based Entity Generator1 block at the bottom of the
model to 60*60*24*7, which is the number of seconds in a week.

11-14



Deriving Custom Statistics

Computation of the Cycle Average
In the example, the subsystem performs computations each time a customer
departs from the queuing system and at each boundary of a daily or weekly
cycle. Within the subsystem, the MATLAB Function block counts the number
of customers and the total waiting time among all customers at that point.
The block resets these quantities to zero at each boundary of a cycle.

The block uses persistent variables for quantities whose values it must
retain from one invocation to the next. The number of customers and total
waiting time are important to retain for the computation of an average over
time rather than an instantaneous statistic. Previous values of inputs are
important to retain for comparison, so the function can determine whether it
needs to update or reset its statistics.

The outputs of the MATLAB Function block are

• runningavg, the running sample mean of the input waiting times

• cycleavg, a signal that, at reset times, represents the sample mean over
the cycle that just ended

11-15



11 Using Statistics

Below are the subsystem contents and the function that the MATLAB
Function block represents.

Subsystem Contents

function [runningavg, cycleavg] = fcn(d,et,reset)
%FCN Compute average of ET, resetting at each update of RESET
% [RUNNINGAVG,CYCLEAVG] = FCN(D,ET,RESET) computes the average
% of ET over contiguous intervals. D is the number of samples
% of ET since the start of the simulation. Increases in
% RESET indicate when to reset the average.
%
% Assume this function is invoked when either D or RESET
% (but not both) increases. This is consistent with the
% behavior of the AtomicSubsystem block that contains
% this block in this example.
%
% RUNNINGAVG is the average since the start of the interval.
%
% At reset times, CYCLEAVG is the average over the interval
% that just ended; at other times, CYCLEAVG is 0.

% Declare variables that must retain values between iterations.
persistent total customers last_reset last_d;

% Initialize outputs.
cycleavg = 0;
runningavg = 0;

% Initialize persistent variables in the first iteration.
if isempty(total)

total = 0;
customers = 0;
last_reset = 0;

11-16



Deriving Custom Statistics

last_d = 0;
end

% If RESET increased, compute outputs and reset the statistics.
if (reset > last_reset)

cycleavg = total / customers; % Average over last interval.
runningavg = cycleavg; % Maintain running average.
total = 0; % Reset total.
customers = 0; % Reset number of customers.
last_reset = reset;

end

% If D increased, then update the statistics.
if (d > last_d)

total = total + et;
customers = customers + 1;
last_d = d;
runningavg = total / customers;

end

11-17



11 Using Statistics

Measuring Point-to-Point Delays

In this section...

“Overview of Timers” on page 11-18

“Basic Example Using Timer Blocks” on page 11-19

“Basic Procedure for Using Timer Blocks” on page 11-20

“Timing Multiple Entity Paths with One Timer” on page 11-21

“Restarting a Timer from Zero” on page 11-22

“Timing Multiple Processes Independently” on page 11-22

Overview of Timers
Suppose you want to determine how long each entity takes to advance from
one block to another, or how much time each entity spends in a particular
region of your model. To compute these durations, you can attach a timer to
each entity that reaches a particular spot in the model. Then you can

• Start the timer. The block that attaches the timer also starts it.

• Read the value of the timer whenever the entity reaches a spot in the
model that you designate.

• Restart the timer, if desired, whenever the entity reaches a spot in the
model that you designate.

The next sections describe how to arrange the Start Timer and Read Timer
blocks to accomplish several common timing goals.

Note Timers measure durations, or relative time. By contrast, clocks
measure absolute time. For details about implementing clocks, see
the descriptions of the Clock and Digital Clock blocks in the Simulink
documentation.

11-18



Measuring Point-to-Point Delays

Basic Example Using Timer Blocks
A typical block diagram for determining how long each entity spends in a
region of the model is in the figure below. The Start Timer and Read Timer
blocks jointly perform the timing computation.

The model above measures the time each entity takes between arriving at the
queue and departing from the server. The Start Timer block attaches, or
associates, a timer to each entity that arrives at the block. Each entity has its
own timer. Each entity’s timer starts timing when the entity departs from
the Start Timer, or equivalently, when the entity arrives at the FIFO Queue
block. Upon departing from the Single Server block, each entity arrives at a
Read Timer block. The Read Timer block reads data from the arriving entity’s
timer and produces a signal at the et port whose value is the instantaneous
elapsed time for that entity. For example, if the arriving entity spent 12
seconds in the queue-server pair, then the et signal assumes the value 12.

Basic Example of Post-Simulation Analysis of Timer Data
The model above stores data from the timer in a variable called delay in the
base MATLAB workspace. After running the simulation, you can manipulate
or plot the data, as illustrated below.

% First run the simulation shown above, to create the variable

% "delay" in the MATLAB workspace.

% Histogram of delay values

edges = (0:20); % Edges of bins in histogram

counts = histc(delay.signals.values, edges); % Number of points per bin

figure(1); bar(edges, counts); % Plot histogram.

11-19



11 Using Statistics

title('Histogram of Delay Values')

% Cumulative histogram of delay values

sums = cumsum(counts); % Cumulative sum of histogram counts

figure(2); bar(edges, sums); % Plot cumulative histogram.

title('Cumulative Histogram of Delay Values')

Basic Procedure for Using Timer Blocks
A typical procedure for setting up timer blocks is as follows:

1 Locate the spots in the model where you want to begin timing and to access
the value of the timer.

2 Insert a Start Timer block in the model at the spot where you want to
begin timing.

3 In the Start Timer block’s dialog box, enter a name for the timer in the
Timer tag field. This timer tag distinguishes the timer from other
independent timers that might already be associated with the same entity.

When an entity arrives at the Start Timer block, the block attaches a
named timer to the entity and begins timing.

4 Insert a Read Timer block in the model at the spot where you want to
access the value of the timer.

5 In the Read Timer block’s dialog box, enter the same Timer tag value that
you used in the corresponding Start Timer block.

When an entity having a timer with the specified timer tag arrives at
the block, the block reads the time from that entity’s timer. Using the
Statistics tab of the Read Timer block’s dialog box, you can configure the
block to report this instantaneous time or the average of such values among
all entities that have arrived at the block.

If you need multiple independent timers per entity (for example, to time an
entity’s progress through two possibly overlapping regions of the model), then
follow the procedure above for each of the independent timers. For more
information, see “Timing Multiple Processes Independently” on page 11-22.

11-20



Measuring Point-to-Point Delays

Timing Multiple Entity Paths with One Timer
If your model includes routing blocks, then different entities might use
different entity paths. To have a timer cover multiple entity paths, you can
include multiple Start Timer or multiple Read Timer blocks in a model, using
the same Timer tag parameter value in all timer blocks.

Output Switch Example
In the figure below, each entity advances along one of two different entity
paths via the Output Switch block. The timer continues timing, regardless of
the selected path. Finally, each entity advances to one of the two Read Timer
blocks, which reads the value of the timer.

Input Switch Example
In the figure below, entities wait in two different queues before advancing to a
single server. The timer blocks measure the time each entity spends in its
respective queue-server pair. Two Start Timer blocks, configured with the
same Timer tag parameter value, ensure that all entities possess a timer
regardless of the path they take before reaching the server.

11-21



11 Using Statistics

Restarting a Timer from Zero
You can restart an entity’s timer, that is, reset its value to zero, whenever
the entity reaches a spot in the model that you designate. To do this, insert a
Start Timer block in the model where you want to restart the timer. Then set
the block’s If timer has already started parameter to Restart.

Timing Multiple Processes Independently
You can measure multiple independent durations using the Start Timer and
Read Timer blocks. To do this, create a unique Timer tag parameter for each
independent timer. For clarity in your model, consider adding an annotation
or changing the block names to reflect the Timer tag parameter in each
timer block.

The figure below shows how to measure these quantities independently:

• The time each entity spends in the queue-server pair, using a timer with
tag T1

• The time each entity spends in the server, using a timer with tag T2

11-22



Measuring Point-to-Point Delays

The annotations beneath the blocks in the figure indicate the values of the
Timer tag parameters. Notice that the T1 timer starts at the time when
entities arrive at the queue, while the T2 timer starts at the time when
entities depart from the queue (equivalently, at the time when entities arrive
at the server). The two Read Timer blocks read both timers when entities
depart from the server. The sequence of the Read Timer blocks relative to
each other is not relevant in this example because no time elapses while an
entity is in a Read Timer block.

11-23



11 Using Statistics

Varying Simulation Results by Managing Seeds

In this section...

“Connection Between Random Numbers and Seeds” on page 11-24

“Making Results Repeatable by Storing Sets of Seeds” on page 11-25

“Setting Seed Values Programmatically” on page 11-26

“Sharing Seeds Among Models” on page 11-26

“Working with Seeds Not in SimEvents Blocks” on page 11-27

“Choosing Seed Values” on page 11-29

See also “Detecting Nonunique Seeds and Making Them Unique” on page
13-90.

Connection Between Random Numbers and Seeds
When a simulation uses random numbers and you compute statistical results
from it, you typically want to use different sequences of random numbers in
these situations:

• In the random processes of a single simulation run

• Across multiple simulation runs

To vary a sequence of random numbers, vary the initial seed on which
the sequence of random numbers is based. SimEvents blocks that have a
parameter called Initial seed include:

• Time-Based Entity Generator

• Event-Based Random Number

• Entity Splitter

• Blocks in the Routing library

Some blocks in other library sets have parameters that represent initial seeds.
For example, the Random Number and Uniform Random Number blocks in
the Simulink Sources library have parameters called Initial seed.

11-24



Varying Simulation Results by Managing Seeds

Also, if your simulation is configured to randomize the sequence of certain
simultaneous events, the Configuration Parameters dialog box has a
parameter called Seed for event randomization. This parameter indicates
the initial seed for the sequence of random numbers that affect processing of
simultaneous events.

Making Results Repeatable by Storing Sets of Seeds
If you need to repeat the results of a simulation run and expect to change
random number sequences, then you should store the seeds before changing
them. You can later repeat the simulation results by resetting the stored
seeds; see “Setting Seed Values Programmatically” on page 11-26 to learn
more.

When all seeds are parameters of SimEvents blocks, use this procedure to
store the seeds:

1 Decide whether you want to store seeds from SimEvents blocks in a system
(including subsystems at any depth) or from a single block.

2 Create a string variable (called sysid, for example) that represents the
system name, subsystem path name, or block path name.

Tip To avoid typing names, use gcb or gcs:

• Select a subsystem or block and assign sysid = gcb.

• Click in a system or subsystem and assign sysid = gcs.

3 Use the se_getseeds function with sysid as the input argument. The
output is a structure having these fields:

• system— Value of the sysid input to se_getseeds

• seeds— Structure array, of which each element has these fields:

– block— Path name of a block that uses a random number generator,
relative to system

– value — Numeric seed value of the block

11-25



11 Using Statistics

4 Store the output in an array, cell array, or MAT-file. Use a MAT-file if you
might need to recover the values in a different session.

For an example that uses se_getseeds, see the Seed Management Workflow
for Random Number Generators demo.

If your model uses random numbers in contexts other than SimEvents blocks,
see “Working with Seeds Not in SimEvents Blocks” on page 11-27.

Setting Seed Values Programmatically
To set seed values programmatically in blocks that use random numbers,
use one or more of these approaches:

• If you have a seed structure in the same format as the output of the
se_getseeds function, use the se_setseeds function to set seed values
in the corresponding blocks.

For an example, see the Seed Management Workflow for Random Number
Generators demo.

• If you want the application to choose seed values for you and then set
the values in some or all SimEvents blocks, use the se_randomizeseeds
function.

For examples, see the Avoiding Identical Seeds for Random
Number Generators demo. To learn about specific options for using
se_randomizeseeds, see its reference page.

• If your model uses random numbers in contexts other than SimEvents
blocks, use the set_param function to set seed values.

For examples, see “Working with Seeds Not in SimEvents Blocks” on page
11-27.

Sharing Seeds Among Models
Suppose you want to share seeds among multiple variants of a model or
among models that have a common subsystem. The se_getseeds and
se_setseeds functions provide a convenient way to apply seed values of
the SimEvents blocks in one model to the corresponding blocks in a second
model. Use this procedure:

11-26



Varying Simulation Results by Managing Seeds

1 Create string variables (for example, sys1 and sys2) that represent the
system names of the two models.

2 Open both models, if you have not already done so.

3 Use the se_getseeds function with sys1 as the input argument. The result
is a seed structure that represents the seeds in the SimEvents blocks in
model sys1.

4 Use the se_setseeds function with the seed structure as the first input
argument and sys2 as the second input argument. The function uses
information from the seed structure but overrides the system name stored
in the seed structure. As a result, the function sets the seeds in model sys2
to values from model sys1.

Working with Seeds Not in SimEvents Blocks
The seed management features in SimEvents software cover blocks in the
SimEvents libraries. If your model uses random number sequences in other
blocks or in the Seed for event randomization configuration parameter,
you can use get_param and set_param commands to retrieve and set the
seeds, respectively. These examples illustrate the techniques:

Example: Retrieving and Changing a Seed in a Custom
Subsystem
This example illustrates how to identify relevant variable names for seed
parameters, query seed values, and set seed values. The specific block in
this example is the Uniform Random Number block within a custom masked
subsystem in a demo model.

1 Open the demo model.

sedemo_md1

2 Select the block labeled Exponential Generation and store its path name.
Exponential Generation is a custom masked subsystem that has a seed
parameter related to a Uniform Random Number block under the mask.

blk = gcb; % Pathname of current block

3 Query the dialog parameters of the block.

11-27



11 Using Statistics

vars = get_param(blk,'DialogParameters')

vars =

seed: [1x1 struct]

The term seed in the output indicates a parameter’s underlying variable
name, which can differ from the text label you see in the block dialog
box. You might guess that seed represents the seed of a random number
generator. Optionally, you can confirm that this variable name corresponds
to the Initial seed text label in the dialog box using this command:

textlabel = vars.seed.Prompt

textlabel =

Initial seed

4 Query the seed parameter for its value.

thisseed = get_param(blk,'seed')

thisseed =

60790

5 Change the value of the seed parameter to a constant.

newseed = '60791'; % String whose value is a number
set_param(blk,'seed',newseed);

See “Choosing Seed Values” on page 11-29 for criteria related to the values
you choose for seeds.

6 Change the value of the seed parameter to the name of a variable in the
workspace. As a result, the dialog box shows the name of the variable
instead of the value stored in the variable. This approach might be useful if
you want to use set_param once and then change the workspace variable
repeatedly (for example, within a loop) to vary the seed value.

seedvariable = 60792; % Numeric variable
set_param(blk,'seed',...

11-28



Varying Simulation Results by Managing Seeds

'seedvariable'); % Parameter refers to variable

Choosing Seed Values
Here are some recommendations for choosing appropriate values for seed
parameters of blocks:

• If you choose a seed value yourself, choose an integer between 0 and 232–1.

• To obtain the same sequence of random numbers the next time you run the
same simulation, set the seed to a fixed value.

• To obtain a different sequence of random numbers the next time you run
the same simulation, use one of these approaches:

- Change the value of the seed, using the se_randomizeseeds function
or any other means.

- Set the value of the seed to a varying expression such as
mod(ceil(cputime*99999),2^32). See the cputime function for more
details.

• If seed parameters appear in multiple places in your model, choose
different values, or expressions that evaluate to different values, for all
seed parameters. To have the application detect nonunique seeds in
SimEvents blocks, use the “Identical seeds for random number generators”
configuration parameter. To learn how to make seeds unique in SimEvents
blocks across a model, see “Detecting Nonunique Seeds and Making Them
Unique” on page 13-90.

11-29



11 Using Statistics

Regulating the Simulation Length

In this section...

“Overview” on page 11-30

“Setting a Fixed Stop Time” on page 11-30

“Stopping Upon Processing a Fixed Number of Entities” on page 11-31

“Stopping Upon Reaching a Particular State” on page 11-32

Overview
When you gather statistics from a simulation, ending the simulation at
the right time is more important than if you are only observing behavior
qualitatively. Typical criteria for ending a discrete-event simulation include
the following:

• A fixed amount of time passes

• The simulation processes a fixed number of packets, parts, customers, or
other items that entities represent

• The simulation achieves a particular state, such as an overflow or a
machine failure

Setting a Fixed Stop Time
To run a simulation interactively with a fixed stop time, do the following:

1 Open the Configuration Parameters dialog box by choosing
Simulation > Configuration Parameters in the menu of the model
window.

2 In the dialog box, set Stop time to the desired stop time.

3 Run the simulation by choosing Simulation > Start.

To fix the stop time when running a simulation programmatically, use syntax
like

sim('model',timespan)

11-30



Regulating the Simulation Length

where model is the name of the model and timespan is the desired stop time.

Stopping Upon Processing a Fixed Number of Entities
By counting entities, you can stop the simulation when the simulation
processes a fixed number of entities. The basic procedure for stopping a
simulation based on the total number of entity departures from a block is:

1 Find the parameter of the block that enables the departure counter as
a signal output. Most blocks call the parameter Number of entities
departed. Exceptions are in the following table.

Block Parameter

Entity Departure Counter Write count to signal port #d

Entity Sink Number of entities arrived

2 Set the check box. This setting causes the block to have a signal output port
corresponding to the entity count.

3 Connect the new signal output port to an Atomic Subsystem block.

4 Double-click the subsystem block to open the subsystem it represents.

5 Delete the Outport block labeled Out.

6 Connect the Inport block labeled In to a Compare To Constant block.

7 In the Compare To Constant block,

• Set Operator to >=.

• Set Constant value to the desired number of entity departures.

• Set Output data type mode to boolean.

8 Connect the Compare To Constant block to a Stop Simulation block. The
result should look like the following, except that your SimEvents block
might be a block other than Entity Departure Counter.

11-31



11 Using Statistics

Top-Level Model

Subsystem Contents

See the considerations discussed in “Tips for Using State-Based Stopping
Conditions” on page 11-35 below. They are relevant if you are stopping
the simulation based on an entity count, where “desired state” means the
entity-count threshold.

Stopping Upon Reaching a Particular State
Suppose you want the simulation to end when it achieves a particular state,
such as an overflow or a machine failure. The state might be the only criterion
for ending the simulation, or the state might be one of multiple criteria, each
of which is sufficient reason to end the simulation. An example that uses
multiple criteria is a military simulation that ends when all identified targets
are destroyed or all resources (ammunition, aircraft, etc.) are depleted,
whichever occurs first.

Once you have identified a state that is relevant for ending the simulation,
you typically create a Boolean signal that queries the state and connect the
signal to a Stop Simulation block. Typical ways to create a Boolean signal
that queries a state include the following:

• Connect a signal to a logic block to determine whether the signal satisfies
some condition. See the blocks in the Simulink Logic and Bit Operations
library. The following figure below illustrates one possibility.

11-32



Regulating the Simulation Length

Top-Level Model

Subsystem Contents

• Use a Get Attribute block to query an attribute and a logic block to
determine whether the attribute value satisfies some condition. The next
figure illustrates one possibility.

Top-Level Model

Subsystem Contents

• To end the simulation whenever an entity reaches a particular entity
path, you can end that path with an Entity Sink block, enable that block’s
output signal to count entities, and check whether the output signal is
greater than zero.

11-33



11 Using Statistics

Top-Level Model

Subsystem Contents

• Logically combine multiple tests using logic blocks to build the final
Boolean signal that connects to a Stop Simulation block. (A logical OR
operation is implied if your model contains an independent Stop Simulation
block for each of the multiple tests, meaning that the simulation ends when
the first such block processes an input signal whose value is true.) The
figure below illustrates one possibility using the exclusive-OR of two tests,
one of which is in turn the logical AND of two tests.

Top-Level Model

11-34



Regulating the Simulation Length

Subsystem Contents

Tips for Using State-Based Stopping Conditions
When using a state rather than a time to determine when the simulation
ends, keep in mind the following considerations:

• If the model has a finite stop time, then the simulation might end before
reaching the desired state. Depending on your needs, this might be a
desirable or undesirable outcome. If it is important that the simulation not
stop too early, then you can follow the instructions in “Setting a Fixed Stop
Time” on page 11-30 and use Inf as the Stop time parameter.

• If you set the Stop time parameter to Inf, then you should ensure that
the simulation actually stops. For example, if you want to stop based on an
entity count but the simulation either reaches a deadlock or sends most
entities on a path not involving the block whose departure count is the
stopping criterion, then the simulation might not end.

• Checking for the desired state throughout the simulation might make the
simulation run more slowly than if you used a fixed stop time.

11-35



11 Using Statistics

11-36



12

Using Stateflow Charts in
SimEvents Models

• “Role of Stateflow Charts in SimEvents Models” on page 12-2

• “Guidelines for Using Stateflow and SimEvents Blocks” on page 12-3

• “Examples Using Stateflow Charts and SimEvents Blocks” on page 12-4



12 Using Stateflow® Charts in SimEvents® Models

Role of Stateflow Charts in SimEvents Models
SimEvents software works with Stateflow software to represent systems
containing state-transition diagrams that can produce or be controlled by
discrete events. Both software products are related to event-driven modeling,
but they play different roles:

• SimEvents blocks can model the movement of entities through a system
so you can learn how such movement relates to overall system activity.
Entities can carry data with them. Also, SimEvents blocks can generate
events at times that are truly independent of the time steps dictated by the
ODE solver in Simulink software.

• Stateflow charts can model the state of a block or system. Charts
enumerate the possible values of the state and describe the conditions that
cause a state transition. Runtime animation in a Stateflow chart depicts
transitions but does not indicate movement of data.

For scenarios that combine SimEvents blocks with Stateflow charts, see
“Examples Using Stateflow Charts and SimEvents Blocks” on page 12-4.

You can interpret the Signal Latch block with the st output signal enabled
as a two-state machine that changes state when read and write events
occur. Similarly, you can interpret Input Switch and Output Switch blocks
as finite-state machines whose state is the selected entity port. However,
Stateflow software offers more flexibility in the kinds of state machines you
can model and an intuitive development environment that includes animation
of state transitions during the simulation.

12-2



Guidelines for Using Stateflow® and SimEvents® Blocks

Guidelines for Using Stateflow and SimEvents Blocks
When your model contains Stateflow charts in addition to SimEvents blocks,
you must follow these rules:

• Insert a Timed to Event Signal gateway block between Stateflow output
and SimEvents input.

• If the chart is capable of propagating its execution context, select this
option as follows:

1 Select the Stateflow block and choose Edit > Subsystem Parameters
from the model window’s menu bar.

2 In the dialog box that opens, select Propagate execution context
across subsystem boundary if it appears and click OK. If this
parameter does not appear in the dialog box, just click OK.

Note If the chart does not offer this option, you might see a delay in the
response of other blocks to the chart’s output signals. The duration of the
delay is the time between successive calls to the chart.

• If an output of the chart connects to a SimEvents block, do not configure
the chart to be entered at initialization. To ensure that this configuration
is correct,

1 Select the File > Chart Properties from the chart window’s menu bar.

2 In the dialog box that opens, clear Execute (enter) Chart At
Initialization and click OK. This check box is cleared by default.

When you design default transitions in your chart, keep in mind that the
chart will not be entered at initialization. For example, notice that the
default transition in the example in “Example: Failure and Repair of a
Server” on page 5-21 indicates the state corresponding to the first actual
event during the simulation, not an initial state.

• If the chart has an output signal, you can provide a nonzero initial output
using the Initial Value block as in “Specifying Initial Values of Event-Based
Signals” on page 4-14. Because the chart is not entered at initialization,
you cannot use the chart itself to provide a nonzero initial output.

12-3



12 Using Stateflow® Charts in SimEvents® Models

Examples Using Stateflow Charts and SimEvents Blocks

In this section...

“Failure State of Server” on page 12-4

“Go-Back-N ARQ Model” on page 12-4

Failure State of Server
The examples in “Using Stateflow Charts to Implement a Failure State”
on page 5-20 use Stateflow charts to implement the logic that determines
whether a server is down, under repair, or operational. SimEvents blocks
model the asynchronous arrival of customers, advancement of customers
through a queue and server, and asynchronous failures of the server. While
these examples could alternatively have represented the server’s states using
signal values instead of states of a Stateflow chart, the chart approach is more
intuitive and scales more easily to include additional complexity.

Go-Back-N ARQ Model
The Go-Back-N Automatic Repeat Request demo uses SimEvents and
Stateflow blocks to model a communication system. SimEvents blocks
implement the movement of data frames and acknowledgment messages
from one part of the system to another. Stateflow blocks implement the
logical transitions among finitely many state values of the transmitter and
the receiver.

Receiver State
At the receiver, the chart decides whether to accept or discard an incoming
frame of data, records the identifier of the last accepted frame, and regulates
the creation of acknowledgment messages. Interactions between the Stateflow
chart and SimEvents blocks include these:

• The arrival of an entity representing a data frame causes the generation of
a function call that invokes the chart.

• The chart can produce a routing signal that determines which path entities
take at an Output Switch block.

12-4



Examples Using Stateflow® Charts and SimEvents® Blocks

• The chart can produce a function call that causes the Event-Based Entity
Generator block to generate an entity representing an acknowledgment
message.

Transmitter State
At the transmitter, the chart controls the transmission and retransmission
of frames. Interactions between the Stateflow chart and SimEvents blocks
include these:

• The arrival of an entity representing a new data frame or an
acknowledgment message causes the generation of a function call that
invokes the chart.

• The completion of transmission of a frame (that is, the completion of service
on an entity representing a frame) causes the generation of a function
call that invokes the chart.

• The chart can produce a routing signal that determines which path entities
take at an Output Switch block.

• The chart can produce a function call that causes the Release Gate block to
permit the advancement of an entity representing a data frame to transmit
(function call at Stateflow block’s tx output port) or retransmit (function
call at Stateflow block’s retx output port).

12-5



12 Using Stateflow® Charts in SimEvents® Models

12-6



13

Debugging Discrete-Event
Simulations

• “Overview of Debugging Resources” on page 13-2

• “Overview of the SimEvents Debugger” on page 13-3

• “Starting the SimEvents Debugger” on page 13-5

• “The Debugger Environment” on page 13-7

• “Independent Operations and Consequences in the Debugger” on page 13-21

• “Stopping the Debugger” on page 13-25

• “Stepping Through the Simulation” on page 13-27

• “Inspecting the Current Point in the Debugger” on page 13-32

• “Inspecting Entities, Blocks, and Events” on page 13-34

• “Working with Debugging Information in Variables” on page 13-41

• “Viewing the Event Calendar” on page 13-46

• “Customizing the Debugger Simulation Log” on page 13-47

• “Debugger Efficiency Tips” on page 13-55

• “Defining a Breakpoint” on page 13-57

• “Using Breakpoints During Debugging” on page 13-63

• “Block Operations Relevant for Block Breakpoints” on page 13-67

• “Animating ” on page 13-74

• “Common Problems in SimEvents Models” on page 13-78

• “Recognizing Latency in Signal Updates” on page 13-92



13 Debugging Discrete-Event Simulations

Overview of Debugging Resources

To Read About... Refer to...

Running the simulation using the
SimEvents debugger

“Overview of the SimEvents
Debugger” on page 13-3

Some modeling errors and ways to
avoid them

“Common Problems in SimEvents
Models” on page 13-78

Plotting signals, attribute values,
event information, or entity
information during the simulation

“Using Plots for Troubleshooting” on
page 10-12

Gathering data during the
simulation that reflects block
behavior

“Accessing Statistics from
SimEvents Blocks” on page 11-5
and “Sending Data to the MATLAB
Workspace” on page 4-17

Examining the set or processing
sequence of simultaneous events

“Exploring Simultaneous Events” on
page 3-4

13-2



Overview of the SimEvents® Debugger

Overview of the SimEvents Debugger
SimEvents software includes a debugger that lets you use MATLAB
functions to suspend a simulation at each step or breakpoint, and query
simulation behavior. The debugger also creates a simulation log with detailed
information about what happens during the simulation.

This table indicates sources of relevant information about the debugger.
For information about debugging resources other than the debugger, see
“Overview of Debugging Resources” on page 13-2.

To Read
About...

Refer to... Description

Functions Debugger Function Reference List of functions related to debugging

“Confirming Event-Based Behavior
Using the SimEvents Debugger”,
part of an example in the SimEvents
getting started documentation

Stepping through a simulation

“Exploring the D/D/1 System Using
the SimEvents Debugger”, part of an
example in the SimEvents getting
started documentation

Querying the final state of a
simulation

A video tutorial on the Web, in two
parts:

• Basic Single Stepping and
Querying

• Breakpoints and Advanced
Querying

Stepping, querying, and using
breakpoints

“Example: Choices of Values for
Event Priorities” on page 3-11

Interpreting the simulation log

“Example: Preemption by
High-Priority Entities” on page
5-11

Stepping forward from a breakpoint
and interpreting the simulation log

Examples

“Example: Deadlock Resulting from
Loop in Entity Path” on page 13-85

Inferring the reasons for a simulation
deadlock

13-3



13 Debugging Discrete-Event Simulations

To Read
About...

Refer to... Description

“Starting the SimEvents Debugger”
on page 13-5

How to start the debugger

“Stepping Through the Simulation”
on page 13-27 and “Using
Breakpoints During Debugging”
on page 13-63

How to control the simulation

Procedures

“Inspecting Entities, Blocks,
and Events” on page 13-34 and
“Customizing the Debugger
Simulation Log” on page 13-47

How to get information

Background “The Debugger Environment” on
page 13-7

Working in debug mode and
interpreting debugger displays

13-4



Starting the SimEvents® Debugger

Starting the SimEvents Debugger
Before you simulate a system using the SimEvents debugger, make sure
that the system is not currently simulating and that you are not running the
Simulink debugger on any system. Also ensure that the system contains
at least one SimEvents block. The SimEvents debugger does not work on
systems without these blocks.

To simulate a system using the SimEvents debugger, enter

sedebug(sys)

at the MATLAB command prompt. sys is a string representing the system
name. An example is sedebug('sedemo_outputswitch').

The results of starting the debugger are:

• The output in the MATLAB Command Window indicates that the debugger
is active and includes hyperlinks to sources of information.

*** SimEvents Debugger ***

Functions | Help | Watch Video Tutorial

%=========================================================================%

Initializing Model sedemo_outputswitch

sedebug>>

• The command prompt changes to sedebug>>. This notation is the debugger
prompt where you enter commands.

• The system starts initializing. At this point, you can inspect initial states
or configure the debugger before blocks have started performing operations.

• You cannot modify the system, modify parameters in the system or in its
blocks, close the system, or end the MATLAB session until the debugger
session ends. To end the debugger session, see “Stopping the Debugger” on
page 13-25.

For more information on how to proceed, see one of these sections:

13-5



13 Debugging Discrete-Event Simulations

• “The Debugger Environment” on page 13-7

• “Stepping Through the Simulation” on page 13-27

• “Confirming Event-Based Behavior Using the SimEvents Debugger”, part
of an example in the SimEvents getting started documentation

• A video tutorial on the Web, in two parts:

- Basic Single Stepping and Querying

- Breakpoints and Advanced Querying

13-6



The Debugger Environment

The Debugger Environment

In this section...

“Debugger Command Prompt” on page 13-7

“Simulation Log in the Debugger” on page 13-8

“Identifiers in the Debugger” on page 13-19

Debugger Command Prompt
When the SimEvents debugger is active, the command prompt is sedebug>>
instead of >>. The sedebug>> prompt reminds you that the simulation is
suspended in debugging mode.

When you enter commands at the sedebug>> prompt, you can:

• Invoke debugger functions using only the function names, without the
package qualifier, sedb.. For example, you can enter step at the sedebug>>
prompt even though the fully qualified name of the function is sedb.step.

Debugger functions that you invoke at the sedebug>> prompt are in the
sedb package, so their fully qualified names start with “sedb.”. You can
either include or omit the sedb. prefix when entering commands at the
sedebug>> prompt because the sedebug function imports the sedb package.

• See a list of debugger functions by entering help with no input arguments.

At the >> prompt, the same list is available via the syntax help sedb.

When you enter commands at the sedebug>> prompt, follow these rules:

• Do not append additional debugger commands on the same line as a
command that causes the simulation to proceed. For example, to step
twice, you must enter step on two lines instead of entering the single
command step; step.

• Do not invoke sedebug or sldebug.

In the sedb package, functions are valid only when the SimEvents debugger
is active.

13-7



13 Debugging Discrete-Event Simulations

Simulation Log in the Debugger
When the simulation proceeds during debugging mode, the debugger displays
messages in the Command Window to indicate what is about to happen or
what has just happened in the simulation. Collectively, these messages make
up the simulation log. These topics describe what you see in the simulation
log:

• “Key Parts of the Simulation Log” on page 13-8

• “Optional Displays of Event Calendar in the Simulation Log” on page 13-10

• “Interpreting the Simulation Log” on page 13-12

• “Event Scheduling, Execution, and Cancelation Messages” on page 13-13

• “Detection Messages” on page 13-15

• “Entity Operation Messages” on page 13-16

• “Monitoring Block Messages” on page 13-17

• “Initialization Messages” on page 13-18

• “Signal Operation Messages” on page 13-18

• “Execution of Time-Based Blocks in Event-based Systems Block Messages”
on page 13-19

To learn how to obtain additional information via query commands, see
“Inspecting Entities, Blocks, and Events” on page 13-34.

Key Parts of the Simulation Log
Here is a sample excerpt of the simulation log in its default configuration.

13-8



The Debugger Environment

�

�

�
�
��������	

��

	�����

���
	�����
��

������

�	�������
����������	����
����	����

�	
�����
��
������������	�
�	������

����
	����
����

�����������������

����������������

�
The sample highlights these typical features of messages in the simulation log:

• Individual messages typically span multiple lines in the Command Window.
Lines that look like %====% or %....% precede each individual message.

• The first line of each message provides a summary. The phrasing of the
summary indicates whether the message describes something that is about
to happen or that has just happened. When you inspect states, knowing
the difference is important.

13-9



13 Debugging Discrete-Event Simulations

Phrasing of
Summary

Examples Interpretation

Action statement Executing, scheduling,
advancing, generating,
and others

The action is about to
happen. It has not
happened yet.

Verb in the past
tense

Detected The action has just
happened.

• Some messages include the simulation time. Messages that do not include
the simulation time describe activities at the simulation time most recently
included in the simulation log.

• Some messages use tokens in parentheses to identify events or entities
uniquely. For details, see “Identifiers in the Debugger” on page 13-19.

• Some messages are indented to indicate operations that are consequences
of other operations. For details, see “Independent Operations and
Consequences in the Debugger” on page 13-21.

• Block names are underlined and act as hyperlinks.

If you click the path, the model window opens and highlights the block. To
clear the highlighting, select View > Remove Highlighting.

Optional Displays of Event Calendar in the Simulation Log
You can configure the debugger to list the events on the event calendar, as
part of the simulation log. Event calendar listings appear before execution
messages. The following illustration is a sample event calendar listing.

13-10



The Debugger Environment

�������	
���	�
��
�
	�

���������������������������������

��
�����������

�
���������������

The event calendar display spans multiple lines in the Command Window. A
line that looks like %----% precedes the event calendar display.

Each listing in the event calendar display includes these event characteristics:

• Discrete-event system identifier, which identifies the discrete-event system
during the debugger session. See “Discrete-Event Simulation Using
SimEvents in Simulink Models” for more information on discrete-event
systems.

• Event identifier, which is a token that identifies the event uniquely during
the debugger session. For details, see “Identifiers in the Debugger” on
page 13-19.

• Scheduled time of the event.

• Event type. For details, see “Supported Events in SimEvents Models” on
page 2-2.

• Event priority. The value can be a number, SYS1, or SYS2. For details, see
“Event Sequencing” on page 14-9 or “Overview of Simultaneous Events”
on page 3-2.

• Entity identifier of an entity associated with the event, if applicable. If no
entity is associated with the event, <none> appears.

• Partial path of the block that processes the event when it occurs. The
partial path omits the name of the model, but is otherwise the same as the
full path of the block.

13-11



13 Debugging Discrete-Event Simulations

Block paths are underlined and act as hyperlinks.

If you click the path, the model window opens and highlights the block. To
clear the highlighting, select View > Remove Highlighting.

When comparing the simulation log with the event calendar display, the
sequence on the calendar and the sequence in which the events were scheduled
might differ, even for simultaneous events that have equal priority. For
details, see “Procedure for Specifying Equal-Priority Behavior” on page 3-9.

To learn how to configure the debugger to show event calendar displays, see
“Customizing the Debugger Simulation Log” on page 13-47.

Interpreting the Simulation Log
The most recent message in the simulation log shows you the simulation
status while the debugger is waiting for you to enter the next command.
When you inspect states, if the phrasing of the summary uses an action
statement to indicate that the action has not happened yet, the state does not
reflect the completion of the action. For example, if the most recent message
in the simulation log indicates that a server block is scheduling a service
completion event, the scheduling has not occurred yet and the evcal function
does not list the event on the event calendar. If you want to see where the
event is on the event calendar relative to other scheduled events, you must
proceed in the simulation by one step and then call evcal.

The simulation log shows you what is happening during the simulation.
When you simulate in debugging mode, the actions in the simulation log
are the units of debugging behavior. By using the debugger on those units
of debugging behavior, you can control the simulation process and query
simulation behavior. When you proceed in the simulation step by step, the
simulation is suspended before or after the actions that the simulation log
reports.

By contrast, some approaches that the simulation log does not intend to
reflect are:

• A block-by-block simulation process. In a discrete-event simulation, a
block can take multiple actions at a given time, potentially interspersed
with actions of other blocks. Alternatively, a block can take no action for
long periods of time, even while other blocks in the system are active.

13-12



The Debugger Environment

Messages in the simulation log might not be in the same sequence that you
see in the topology of the block diagram, even if the topology of the block
diagram is linear.

• An entity-by-entity simulation process. An entity can advance through
multiple blocks or can be the object of multiple actions at a given time,
potentially interspersed with actions on other entities. Alternatively, an
entity can go for long periods of time without moving, changing, or affecting
anything else in the simulation, even while other entities in the system
are active.

• One message per time value. In a discrete-event simulation, many actions
can occur at the same time. Therefore, the debugger lets you query
simulation behavior at intermediate points.

The view into simulation behavior is useful during debugging because the
simulation log reflects what is happening during the simulation. When you
see what is happening, you can diagnose problems, explore solutions, improve
your modeling proficiency, and learn about the underlying system that you
are modeling.

Event Scheduling, Execution, and Cancelation Messages
When the event calendar is about to change during a debugging session, the
simulation log displays a message that describes the event that the block is
about to schedule, execute, or cancel. The event calendar has not yet changed.

When a block is about to execute a subsystem, function call, memory read,
or memory write event that is not on the event calendar, the simulation
log displays a message that describes the event. The execution, which is a
dependent operation, has not yet occurred.

Sample Scheduling Message

The following sample shows that the Single Server block is about to add
a service completion event to the event calendar. The event has priority
500, a scheduled time of T=5, and identifier ev3. The event represents the
completion of service on the entity whose identifier is en2.

%..........................................................................%

Scheduling ServiceCompletion Event (ev3)

13-13



13 Debugging Discrete-Event Simulations

: EventTime = 5.000000000000000

: Priority = 500

: Entity = en2

: Block = Single Server

Sample Independent Execution Message

The following sample shows that the Single Server block is about to execute
the service completion event for the entity whose identifier is en2. The event
time of T=5 equals the current simulation time. The event has priority 500,
which is relevant if multiple events on the event calendar share the same
event time. The event identifier is ev3.

%==============================================================================%

Executing ServiceCompletion Event (ev3) Time = 5.000000000000000

: Entity = en2 Priority = 500

: Block = Single Server

Sample Cancelation Message

The following sample shows that the Single Server block is about to cancel
the service completion event for the entity whose identifier is en2, because
the entity has timed out. The service completion event has priority 500 and
identifier ev4.

%==============================================================================%

Executing Timeout Event (ev3) Time = 1.000000000000000

: Entity = en2 Priority = 1700

: Block = Single Server

%..........................................................................%

Canceling ServiceCompletion Event (ev4)

: EventTime = 5.000000000000000

: Priority = 500

: Entity = en2

: Block = Single Server

For more information, see “Event Sequencing” on page 14-9 and “Example:
Event Calendar Usage for a Queue-Server Model” on page 2-7.

13-14



The Debugger Environment

Detection Messages
Reactive ports, listen for relevant updates in the input signal and cause an
appropriate reaction in the block possessing the port. For a list of reactive
ports, see “Notifying, Monitoring, and Reactive Ports” on page 14-32. When
labeled reactive ports detect relevant updates during a debugging session, the
simulation log displays a message whose summary starts with Detected.
These messages indicate that the update in the signal has happened and that
the block has detected it. The block has not yet responded to the update. The
response depends on the particular block. For details, see individual block
reference pages.

The appearance of detection messages depends on their source:

• If the input signal is time-based and enters the discrete-event system
through the Timed to Event Signal gateway block, the update is an
independent operation and the detection message is not indented. This
kind of detection message is one of the few ways in which time-based blocks
affect the simulation log.

• If the input signal is event-based, the update is a dependent operation and
the detection message is indented.

Note If a port not in the list of reactive ports, such as the function() input
port of a Function-Call Subsystem block, detects a trigger or function call, the
simulation log does not display a detection message.

Sample Detection Message

The following sample shows a detection message that indicates that the
Event-Based Entity Generator block has detected that its input signal
changed to a new value of 1 from a previous value of 0. Because the block is
configured to respond to rising value changes, the signal update is relevant.
The block responds by scheduling an entity generation event for the current
simulation time (denoted by Now).

%..........................................................................%

Detected Rising Value Change

: NewValue = 1

13-15



13 Debugging Discrete-Event Simulations

: PrevValue = 0

: Block = Event-Based Entity Generator

%..........................................................................%

Scheduling EntityGeneration Event (ev2)

: EventTime = 0.000000000000000 (Now)

: Priority = SYS1

: Block = Event-Based Entity Generator

Entity Operation Messages
Various blocks produce messages in the simulation log that describe how the
block are about to impact entities. The details of entity operation messages
depend on what information is relevant for the particular block and operation.

Sample Entity Advancement Message

An entity whose identifier is en2 is about to depart from the Schedule Timeout
block and arrive at the Single Server block. The entity has not yet advanced.

%..........................................................................%

Entity Advancing (en2)

: From = Schedule Timeout

: To = Single Server

Sample Queuing Message

A FIFO Queue block places entity en4 in the third position. Two other entities
are ahead en4 in the queue, which has a total capacity of 25.

%..........................................................................%

Queuing Entity (en4)

: FIFO Pos = 3 of 3

: Capacity = 25

: Block = FIFO Queue

Sample Attribute Assignment Message

A Set Attribute block assigns the value 3 to the attribute named RepCount
of entity en1.

%..........................................................................%

13-16



The Debugger Environment

Setting Attribute on Entity (en1)

: RepCount = 3

: Block = Set Attribute

Sample Preemption Message

When a preemption occurs, a Single Server block replaces entity en1 with
entity en4, based on values of the entities’ PriorityAttributeName attribute.

%..........................................................................%

Preempting Entity (en1)

: NewEntity = en4 (PriorityAttributeName = 1)

: OldEntity = en1 (PriorityAttributeName = 2)

: Block = Single Server1

Sample Entity Replication Message

A Replicate block replicates entity en1 to produce entity en2.

%..........................................................................%

Replicating Entity (en1)

: Replica 1 of 2 = en2

: Block = Replicate

Sample Entity Destruction Message

An Entity Sink block destroys entity en1.

%..........................................................................%

Destroying Entity (en1)

: Block = Entity Sink

Monitoring Block Messages
When a block is about to react to an update in a signal at a monitoring port,
the block produces a message in the simulation log.

Sample Scope Message

A Signal Scope block updates its plot.

%..........................................................................%

13-17



13 Debugging Discrete-Event Simulations

Executing Scope

: Block = Signal Scope

Sample Workspace Message

A Discrete-Event Signal to Workspace block receives a new data value. The
workspace variable is available only after the debugger session ends.

%..........................................................................%

Executing Discrete-Event Signal To Workspace

: Block = Discrete Event Signal to Workspace

Initialization Messages
Early in the debugging session, the debugger indicates initialization activities.

Message Description

Initializing Model
sedemo_timeout

Appears when the debugging session starts
and the model is in the initialization stage.

Initializing Time-Based
Entity Generators

Appears after the model initialization, if
the model contains at least one Time-Based
Entity Generator block. Initializing a
Time-Based Entity Generator block means
scheduling its first entity generation event.

Signal Operation Messages
Various blocks produce signal operation messages.

Sample Signal Update Detection Message

A sample time hit is detected in the Initial Value block.

Detected Sample Time Hit

: Block = Receiver/Initial Value

Sample Executing Signal Block Message

A signal operation is being performed in the Gain block, which is a time-based
block in the event-based system:

13-18



The Debugger Environment

Executing Signal Block

: Block = Gain

Execution of Time-Based Blocks in Event-based Systems Block
Messages
The debugger detects the execution of time-based blocks in event-based
systems.

Message Description

Executing Signal Block Appears when the debugger detects the start
of execution of such a block.

Identifiers in the Debugger
The simulation log uses tokens to identify blocks, entities, events on the
event calendar, and breakpoints uniquely during the debugger session.
When requesting information about blocks, entities, or events, or when
manipulating breakpoints, you use these identifiers as input arguments.

If you repeat a debugging session in the same version of MATLAB without
changing the model structure or parameters, all identifiers of blocks, entities,
and events are the same from one session to the next.

This table summarizes the notation for identifiers.

Type of Identifier Prefix of Identifier Example

Block blk blk1

Entity en en2

Event ev ev3

Breakpoint b b4

In displays of state information in the debugger, the abbreviation ID refers
to an identifier.

13-19



13 Debugging Discrete-Event Simulations

Note Discrete-event systems do not have identifiers. The debugger refers to
discrete-event systems with numeric values, such as Discrete-Event System
ID: 0. See “Discrete-Event Simulation Using SimEvents in Simulink Models”
for more information on discrete-event systems.

For more information about identifiers, see “Inspecting Entities, Blocks,
and Events” on page 13-34 and “Using Breakpoints During Debugging” on
page 13-63.

13-20



Independent Operations and Consequences in the Debugger

Independent Operations and Consequences in the
Debugger

In this section...

“Significance of Independent Operations” on page 13-21

“Independent Operations” on page 13-21

“Consequences of Independent Operations” on page 13-22

Significance of Independent Operations
This section describes a hierarchy of operations that the SimEvents debugger
uses when interpreting step out or step over commands, and that you
see in the indentation of the simulation log. Learning these definitions can
help you use the step function more effectively and gain more insight from
the simulation log.

Independent Operations
The simulation clock and the event calendar processor jointly drive the
simulation of a SimEvents model, and act as sources of these independent
operations in the debugger simulation log:

• Initialization of the model or any Time-Based Entity Generator blocks in
the model. For more information, see “Initialization Messages” on page
13-18.

• Execution of an event on the event calendar. However, if the application
executes an event without scheduling it on the event calendar, the event
cannot be the basis of an independent operation. To learn which events
are scheduled on the event calendar, see “Role of the Event Calendar” on
page 14-10.

• Execution of blocks that are fed time-based signals via time-based to
event-based gateway blocks. (Simulation logs do not reflect gateway
blocks.)

Other operations that appear in the simulation log are consequences of an
independent operation.

13-21



13 Debugging Discrete-Event Simulations

In the simulation log, an independent operation is not indented after a line
that looks like %====%.

Consequences of Independent Operations
Consequences of independent operations that appear in the simulation log
include, but are not limited to, the following:

• Scheduling of an event on the event calendar

• Cancelation of an event on the event calendar

• Detection by a reactive port of a relevant update in an event-based input
signal

• Execution of a block whose monitoring port connects to an event-based
input signal

• Entity operations, such as:

- Advancement of an entity from one block to another

- Queuing of an entity in a queue block

- Assignment of an attribute to an entity

- Preemption of an entity in a queue by an arriving entity

- Replication of an entity

- Destruction of an entity

• Execution of these events when they are not on the event calendar:

- Subsystem execution

- Function call creation

- Memory read event

- Memory write event

• Detection by a reactive port of a relevant update in a time-based input
signal through a gateway block. You can think of these relevant updates
as zero crossings or level crossings. However, if the input signal is an
event-based signal or if the input port is not a reactive port, the update is
not an independent operation.

13-22



Independent Operations and Consequences in the Debugger

• Execution of a block whose monitoring port connects to a time-based input
signal through a gateway block.

Consequences are also called dependent operations. In the simulation log, a
dependent operation is indented, underneath the independent operation that
causes it and after a line that looks like %....%.

Relationships Among Multiple Consequences
If an independent operation has multiple consequences, they appear in a
sequence that reflects the simulation behavior.

Multiple consequences of an independent operation might or might not be
causally related to each other. For example, in the following simulation
log excerpt, each indented message represents a consequence of the
execution of the ev1 event. Among the indented messages, the Scheduling
ServiceCompletion Event message is a direct consequence of the preceding
message but is not directly related to the message that follows.

%==============================================================================%

Executing EntityGeneration Event (ev1) Time = 0.100000000000000

: Entity = <none> Priority = 300

: Block = Time-Based Entity Generator

sedebug>>step over

%..........................................................................%

Generating Entity (en1)

: Block = Time-Based Entity Generator

%..........................................................................%

Entity Advancing (en1)

: From = Time-Based Entity Generator

: To = Replicate

%..........................................................................%

Replicating Entity (en1)

: Replica 1 of 2 = en2

: Block = Replicate

%..........................................................................%

Entity Advancing (en2)

: From = Replicate

: To = Set Attribute

%..........................................................................%

13-23



13 Debugging Discrete-Event Simulations

Setting Attribute on Entity (en2)

: RepIndex = 1

: Block = Set Attribute

%..........................................................................%

Entity Advancing (en2)

: From = Set Attribute

: To = Infinite Server

%..........................................................................%

Scheduling ServiceCompletion Event (ev2)

: EventTime = 1.100000000000000

: Priority = 500

: Entity = en2

: Block = Infinite Server

%..........................................................................%

Replicating Entity (en1)

: Replica 2 of 2 = en3

: Block = Replicate

%..........................................................................%

Entity Advancing (en3)

: From = Replicate

: To = Infinite Server1

%..........................................................................%

Scheduling ServiceCompletion Event (ev3)

: EventTime = 1.100000000000000

: Priority = 500

: Entity = en3

: Block = Infinite Server1

%..........................................................................%

Destroying Entity (en1)

: Block = Replicate

%..........................................................................%

Scheduling EntityGeneration Event (ev4)

: EventTime = 0.200000000000000

: Priority = 300

: Block = Time-Based Entity Generator

%==============================================================================%

Executing EntityGeneration Event (ev4) Time = 0.200000000000000

: Entity = <none> Priority = 300

: Block = Time-Based Entity Generator

13-24



Stopping the Debugger

Stopping the Debugger

In this section...

“How to End the Debugger Session” on page 13-25

“Comparison of Simulation Control Functions” on page 13-25

How to End the Debugger Session
To end the debugger session without completing the simulation, enter one of
these commands at the sedebug>> prompt:

sedb.quit

quit

The simulation ends, the debugging session ends, and the MATLAB command
prompt returns.

At the sedebug>> prompt, quit is equivalent to sedb.quit. However,
specifying the sedb package prevents you from inadvertently ending the
MATLAB session if you enter the command at the incorrect command prompt.

Comparison of Simulation Control Functions
The functions in the next table have different behavior and purposes, but any
of the functions can cause the debugger session to end.

Function Behavior with Respect
to Ending the Debugger
Session

Primary Usage

sedb.quit
or quit

Ends the debugger session
without completing the
simulation.

To end the debugger session
immediately without spending
time on further simulation
log entries, plots, or other
simulation behavior.

runtoend Completes the simulation
and then ends the debugger
session.

To see the simulation log or
plots but not enter commands.

13-25



13 Debugging Discrete-Event Simulations

Function Behavior with Respect
to Ending the Debugger
Session

Primary Usage

cont Ends the debugger session
only if the simulation is
suspended at the built-in
breakpoint at the end of the
simulation.

Primarily with breakpoints.
For more information, see
“Using Breakpoints During
Debugging” on page 13-63.

step Ends the debugger session
only if the simulation is
suspended at the built-in
breakpoint at the end of the
simulation.

Primarily for proceeding
step by step through the
simulation. For more
information, see “Stepping
Through the Simulation” on
page 13-27.

13-26



Stepping Through the Simulation

Stepping Through the Simulation

In this section...

“Overview of Stepping” on page 13-27

“How to Step” on page 13-28

“Choosing the Granularity of a Step” on page 13-29

“Tips for Stepping Through the Simulation” on page 13-30

Overview of Stepping
Using the SimEvents debugger, you can proceed step by step in the
simulation. After each step, you can inspect states or issue other commands
at the sedebug>> prompt.

When to Step
Stepping is appropriate if one of these is true:

• You want to see what happens next in the simulation and you want
frequent opportunities to inspect states as the simulation proceeds.

• You want the simulation to proceed but cannot formulate a condition
suitable for a breakpoint.

When Not to Step
Stepping is not the best way to proceed with the simulation in the debugger
if one of these is true:

• You want the simulation to proceed until it satisfies a condition that you
can formulate using a breakpoint, and you do not need to enter debugging
commands until the condition is satisfied. In this case, using breakpoints
might require you to enter fewer commands compared to stepping; for
details, see “Using Breakpoints During Debugging” on page 13-63.

• You want the simulation to proceed until the end, and you do not need
to enter other commands. In this case, at the sedebug>> prompt, enter
runtoend instead of stepping repeatedly.

13-27



13 Debugging Discrete-Event Simulations

• You want the simulation to proceed until the end, and you need to enter
commands only at the end of the simulation. In this case, remove or disable
any breakpoints you might have set earlier, and, at the sedebug>> prompt,
enter cont instead of stepping repeatedly.

How to Step
If you have decided that stepping is appropriate for your debugging needs, at
the sedebug>> prompt, enter one of the commands in the next table. To learn
about the choices for granularity of steps, see “Choosing the Granularity of a
Step” on page 13-29.

If Latest
Message in
Simulation
Log Is...

And You Want to... At sedebug>>
Prompt, Enter...

Take the smallest possible step step or step inAn independent
operation (not
indented)

Skip consequences of the current
operation and stop at the next
independent operation that
appears in the simulation log

step over

Take the smallest possible step step or step in or
step over

A dependent
operation
(indented) Skip remaining consequences

of the previous independent
operation and stop at the next
independent operation that
appears in the simulation log

step out

As a result, the simulation proceeds and the simulation log displays one or
more messages to reflect the simulation progress.

For an example, see “Building a Simple Hybrid Model” (“Confirming
Event-Based Behavior Using the SimEvents Debugger” section).

13-28



Stepping Through the Simulation

Choosing the Granularity of a Step
Using the SimEvents debugger, you can proceed in the simulation by an
amount that corresponds to one message in the simulation log, or a collection
of messages. The endpoint of a step depends on these factors:

• What is happening in the simulation.

As the section “Interpreting the Simulation Log” on page 13-12 describes,
the simulation log does not use a strictly time-based, block-based, or
entity-based approach to determine the messages that appear. Similarly,
proceeding step by step through a simulation in the SimEvents debugger
does not use a strictly time-based, block-based, or entity-based approach to
determine the endpoints of the steps.

• The detail settings in effect before you invoke step.

If you change the detail settings from their default values to cause the
simulation log to omit entity messages or event messages, you cannot step
to an operation that corresponds to an omitted message unless a breakpoint
coincides with the operation. For instance, see Example: Skipping Entity
Operations When Stepping on page 13-50.

In particular, if your detail settings cause the simulation log to omit all
messages (equivalent to the detail none command), you cannot step to
anything other than breakpoints.

• The step size you choose when you invoke step. Choices are described,
following.

Taking the Smallest Possible Step
The smallest possible step in the SimEvents debugger corresponds to
one message in the simulation log. Taking the smallest possible step is
appropriate if one of these is true:

• You are not sure what the simulation will skip if you take a larger step,
and you want as many opportunities as possible to inspect states as the
simulation proceeds. This might be true if you are new to SimEvents
software, new to the debugger, unfamiliar with the model you are
debugging, or unsure where to look for a simulation problem you are trying
to diagnose.

13-29



13 Debugging Discrete-Event Simulations

• You know that if you take a larger step, the simulation will skip a point in
the simulation at which you want to inspect states.

Taking a Larger Step By Skipping Consequences
A potentially larger step in the SimEvents debugger corresponds to a series
message in the simulation log. The last message in the series is not indented,
while other messages in the series are indented to show that they represent
consequences of an earlier operation. Taking a larger step is appropriate
if one of these is true:

• The current operation is not relevant to you and you want to skip over
its immediate consequences.

• You find it more efficient to scan a series of messages visually than enter a
command interactively after viewing each message, and you do not need to
inspect states at intermediate points in the larger step.

• You find it easier to understand a series of related messages when all are
visible, and you do not need to inspect states at intermediate points in
the larger step.

For Further Information

• “Simulation Log in the Debugger” on page 13-8

• “Customizing the Debugger Simulation Log” on page 13-47

• “Independent Operations and Consequences in the Debugger” on page 13-21

Tips for Stepping Through the Simulation

• Ensuring the action has happened — If you want to inspect states to
confirm the effect of the action in the most recent message in the simulation
log, first ensure that the action has happened. If the message uses an
action statement such as “executing,” use step before inspecting states. If
the message uses a verb in the past tense, such as “detected,” the extra step
is not necessary because the action has already happened.

• Clicking shortcuts— If you use a certain step command frequently, a
shortcut you can click might provide an efficient way to issue the command
repeatedly. To learn about shortcuts, see “Create MATLAB Shortcuts

13-30



Stepping Through the Simulation

to Rerun MATLAB Commands”in the MATLAB Desktop Tools and
Development Environment documentation.

• Connection between step and detail — If your detail settings cause
the simulation log to omit all messages (equivalent to the detail none
command), you cannot step to anything other than breakpoints. In the
absence of breakpoints, a step causes the simulation to proceed until the
end. If you inadvertently reach the end of the simulation in this way
and want to return to the point in the simulation from which you tried
to step, use information in the Command Window to set a breakpoint
in a subsequent debugging session. For example, if the last message in
the simulation log before you inadvertently stepped too far indicates the
execution of event ev5, you can enter evbreak ev5; cont in the next
debugger session.

13-31



13 Debugging Discrete-Event Simulations

Inspecting the Current Point in the Debugger

In this section...

“Viewing the Current Operation” on page 13-32

“Obtaining Information Associated with the Current Operation” on page
13-32

Viewing the Current Operation
The simulation log displays information about what is about to happen or
what has just happened in the simulation. If the log is no longer visible in
the Command Window because of subsequent commands and output displays,
you can redisplay the most recent log entry by entering this command at
the sedebug>> prompt:

currentop

If the most recent log entry represents a dependent operation, the output
in the Command Window also includes the current top-level independent
operation being executed. To learn more about dependent and independent
operations, see “Independent Operations and Consequences in the Debugger”
on page 13-21

Obtaining Information Associated with the Current
Operation
You can get some information about the current operation in the form of
variables in the workspace using commands like those listed in the next table.
Variables containing identifiers can be useful as inputs to state inspection
functions. For details, see “Inspecting Entities, Blocks, and Events” on page
13-34.

Information At sedebug>> Prompt, Enter...

Current simulation time t = simtime

Identifier of the entity that
undergoes the current operation

enid = gcen

13-32



Inspecting the Current Point in the Debugger

Information At sedebug>> Prompt, Enter...

Identifier of the block associated
with the current operation

blkid = gcebid

Path name of the block associated
with the current operation

blkname = gceb

Identifier of the event being
scheduled, executed, or canceled on
the event calendar as part of the
current operation

evid = gcev

13-33



13 Debugging Discrete-Event Simulations

Inspecting Entities, Blocks, and Events

In this section...

“Inspecting Entities” on page 13-34

“Inspecting Blocks” on page 13-36

“Inspecting Events” on page 13-38

“Obtaining Identifiers of Entities, Blocks, and Events” on page 13-38

Inspecting Entities
These sections provide procedures and background information about
inspecting entities:

• “Inspecting Location, Scalar Attributes, Timeouts, and Timers” on page
13-34

• “Inspecting Nonscalar Attribute Values” on page 13-35

• “Interpretation of Entity Location” on page 13-36

For an example, see the sedb.eninfo reference page.

Inspecting Location, Scalar Attributes, Timeouts, and Timers
If you expect all attributes of an entity to have scalar values or if knowing
the sizes of nonscalar attribute values is sufficient, then this procedure is the
simplest way to inspect the entity:

1 Find the entity identifier using the simulation log or one of the approaches
listed in Obtaining Entity Identifiers on page 13-39.

2 At the sedebug>> prompt, enter this command, where enid is the entity
identifier:

eninfo enid % enid is the identifier.

The resulting display includes this information:

• Current simulation time

13-34



Inspecting Entities, Blocks, and Events

• Location of the entity

• Names of attributes of the entity

• Scalar attribute values and sizes of nonscalar attribute values

• Tags, scheduled times, and event identifiers of timeouts

• Tags and elapsed times of timers

Inspecting Nonscalar Attribute Values
To inspect nonscalar values of attributes of an entity:

1 Find the entity identifier using the simulation log or one of the functions
listed in Obtaining Entity Identifiers on page 13-39.

2 At the sedebug>> prompt, enter this command. enid is a string
representing the entity identifier and en_struct is the name of a variable
you want to create in the workspace:

en_struct = eninfo(enid); % enid is the identifier.

The output variable en_struct is a structure that stores this information:

• Current simulation time

• Location of the entity

• Names and values of the attributes of the entity

• Tags, scheduled times, and event identifiers of timeouts

• Tags and elapsed times of timers

3 Use dot notation to access values of any attribute as part of the Attributes
field of en_struct.

For example, to access the value of an attribute called Attribute1, use the
notation en_struct.Attributes.Attribute1. The field name Attributes
is fixed but the names en_struct and Attribute1 depend on names you
choose for the variable and attribute.

13-35



13 Debugging Discrete-Event Simulations

Interpretation of Entity Location
Blocks that possess entity input ports act as storage or nonstorage blocks.
Only storage blocks are capable of holding an entity for a nonzero duration. If
the debugger reports a nonstorage block as the location of an entity, it means
that the debugger has suspended the simulation while the entity is in the
process of advancing through a nonstorage block toward a storage block or
a block that destroys entities. Before the simulation clock moves ahead, the
entity will either arrive at a storage block or be destroyed.

For lists of storage and nonstorage blocks, see “Storage and Nonstorage
Blocks” on page 14-46.

To inspect blocks instead of entities, see “Inspecting Blocks” on page 13-36.

Inspecting Blocks

• “Procedure for Inspecting Blocks” on page 13-36

• “Result of Inspecting Queue Blocks” on page 13-37

• “Result of Inspecting Server Blocks” on page 13-37

• “Result of Inspecting Other Storage Blocks” on page 13-37

• “Result of Inspecting Nonstorage Blocks” on page 13-38

Procedure for Inspecting Blocks
Before inspecting a block, determine if it is capable of providing information.
One way to do this is to see whether the block appears in the output of
blklist. If the block is capable of providing information, use this procedure
to get the information:

1 Find a unique way to refer to the block using one of these approaches:

• Find the block identifier using one of the approaches listed in Obtaining
Block Identifiers on page 13-39.

• Find the path name of the block by selecting the block and using gcb, or
by typing the path name. If you type the path name, be careful to reflect
space characters and line breaks accurately.

13-36



Inspecting Entities, Blocks, and Events

2 At the sedebug>> prompt, enter this command , where thisblk is a string
representing the block identifier or path name:

blkinfo(thisblk); % thisblk is the identifier or path name.

The resulting information depends on the kind of block you are inspecting.

Result of Inspecting Queue Blocks
When you inspect queue blocks, the display includes this information:

• Current simulation time

• Identifiers of entities that the block is currently storing

• Number of entities that the block can store at a time

• Status of each stored entity with respect to the block

• Length of time each stored entity has been in the queue

Result of Inspecting Server Blocks
When you inspect server blocks, the display includes this information:

• Current simulation time

• Identifiers of entities that the block is currently storing

• Number of entities that the block can store at a time

• Status of each stored entity with respect to the block

• Identifier and scheduled time of the service completion event for each entity

Result of Inspecting Other Storage Blocks
When you inspect storage blocks other than queues and servers, the display
includes this information:

• Current simulation time

• Identifiers of entities that the block is currently storing

13-37



13 Debugging Discrete-Event Simulations

For the Output Switch block with the Store entity before switching option
selected, the resulting display also indicates which entity output port is the
selected port.

For a list of storage blocks, see “Storage and Nonstorage Blocks” on page
14-46.

Result of Inspecting Nonstorage Blocks
When you inspect nonstorage blocks, the display includes this information:

• Current simulation time

• Identifier of an entity that is currently advancing through the block. To
learn what it means for a nonstorage block to be the location of an entity,
see “Interpretation of Entity Location” on page 13-36.

Depending on the block, the display might also include additional information.
For details, see the Block and Description columns of the Fields of Output
Structure table on the sedb.blkinfo reference page.

Inspecting Events
To get details about a particular event on the event calendar:

1 Find the event identifier using the simulation log or one of the approaches
listed in Obtaining Event Identifiers on page 13-40.

2 At the sedebug>> prompt, enter this command, where evid is the event
identifier:

evinfo evid % evid is the identifier.

Alternatively, at the sedebug>> prompt, enter evcal to get details about all
events on the event calendar. For more information, see the sedb.evcal
reference page.

Obtaining Identifiers of Entities, Blocks, and Events
In some state inspection functions, you must refer to an entity, block, or
event using its identifier. For background information about identifiers, see

13-38



Inspecting Entities, Blocks, and Events

“Identifiers in the Debugger” on page 13-19. The next tables suggest ways to
obtain identifiers to use as input arguments in state inspection commands.

Obtaining Entity Identifiers

To Display Identifier
of Entity Associated
with...

At sedebug>> Prompt,
Enter...

Link to
Reference Page

The current operation gcen sedb.gcen

A particular block whose
identifier or path name
you know

blkinfo(...). Look in
the ID column in the
resulting tabular display.

sedb.blkinfo

Events on the event
calendar

evcal. Look in the Entity
column in the resulting
tabular display.

sedb.evcal

A particular event whose
identifier you know

evinfo(...). Look at the
Entity entry.

sedb.evinfo

Obtaining Block Identifiers

To Display Identifier
of Block Associated
with...

At sedebug>> Prompt,
Enter...

Link to
Reference Page

The current operation gcebid sedb.gcebid

All blocks whose states
you can inspect

blklist. Look in the first
column in the resulting
tabular display.

sedb.blklist

13-39



13 Debugging Discrete-Event Simulations

Obtaining Event Identifiers

To Display Identifier of
Event Associated with...

At sedebug>> Prompt,
Enter...

Link to
Reference Page

The current operation gcev sedb.gcev

Events on the event
calendar

evcal. Look in the ID
column in the resulting
tabular display.

sedb.evcal

13-40



Working with Debugging Information in Variables

Working with Debugging Information in Variables

In this section...

“Comparison of Variables with Inspection Displays” on page 13-41

“Functions That Return Debugging Information in Variables” on page 13-41

“How to Create Variables Using State Inspection Functions” on page 13-42

“Tips for Manipulating Structures and Cell Arrays” on page 13-43

“Example: Finding the Number of Entities in Busy Servers” on page 13-43

Comparison of Variables with Inspection Displays
State inspection functions in the SimEvents debugger enable you to view
information in the Command Window, as the sections “Inspecting Entities,
Blocks, and Events” on page 13-34 and “Viewing the Event Calendar” on
page 13-46 describe. An alternative way to capture the same information is
in a variable in the MATLAB base workspace. Capturing information in a
workspace variable lets you accomplish these goals:

• Use information from one command as an input to another command,
without having to type or paste information from the Command Window.

• Cache information at a certain point in the simulation, for comparison with
updated information at a later point in the simulation. The workspace
variable remains fixed as the simulation proceeds.

• Store information in a MAT-file and use it in a different MATLAB software
session.

Functions That Return Debugging Information in
Variables
The table lists state inspection functions that can return variables in the
workspace.

Function Returns Class

blkinfo Block information Structure

blklist Blocks and their identifiers Cell

13-41



13 Debugging Discrete-Event Simulations

Function Returns Class

eninfo Entity information Structure

evcal Event calendar Structure

evinfo Event information Structure

gceb Path name of the block associated with the
current operation

String (char)

gcebid Identifier of the block associated with the
current operation

String (char)

gcen Identifier of the entity that undergoes the
current operation

String (char)

gcev Identifier of the event associated with the
current operation

String (char)

simtime Current simulation time Numeric
(double)

How to Create Variables Using State Inspection
Functions
To create a variable using a state inspection function, follow these rules:

• Name an output variable in the syntax that you use to invoke the function,
such as my_entity_id = gcen. The function creates the output variable in
the workspace.

• If the function requires input arguments, express them using the functional
form of the syntax, such as evinfo('ev1'), rather than the command
form, evinfo ev1.

To learn about functional and command forms of syntax, see “Command
vs. Function Syntax” in the MATLAB Programming Fundamentals
documentation.

To learn how to formulate input arguments for blkinfo, eninfo, and
evinfo, see “Obtaining Identifiers of Entities, Blocks, and Events” on
page 13-38.

13-42



Working with Debugging Information in Variables

For details about the information each function returns in the output variable,
see the corresponding function reference page.

Tips for Manipulating Structures and Cell Arrays
Full details about structures and cell arrays are in “Structures” and “Cell
Arrays”, both in the MATLAB Programming Fundamentals documentation.
Tips that you might find useful for working with the variables that debugger
functions return are:

• If a cell array shows something like [1x51 char] instead of exact block
path names when you enter the variable name alone at the command
prompt, use content indexing to display the cell contents explicitly. Content
indexing uses curly braces, {}. For an example, see the sedb.blklist
reference page.

• To access information in nested structures, append nested field names
using dot notation. For an example, see the sedb.eninfo reference page.

• You can assign numeric values of like-named fields in a structure array to
a numeric vector. To do this, enclose the array.field expression in square
brackets, []. For an example, see the sedb.evcal reference page.

• You can assign string values of like-named fields in a structure array
to a cell array. To do this, enclose the array.field expression in curly
braces, {}. For examples, see the sedb.blkinfo and sedb.breakpoints
reference pages.

• You can gather information about like-named fields in a structure array
that satisfy certain criteria, by invoking find and using its output to
index into the structure array. For examples, see the sedb.evcal and
sedb.breakpoints reference pages.

Example: Finding the Number of Entities in Busy
Servers
This example illustrates ways that you can use information from one
command as an input to another command. Suppose your system includes
several server blocks and you want to see how many entities are in each server
block that is currently busy serving an entity. The following code inspects the
event calendar to locate service completion events, uses the events to locate
server blocks that are currently busy, and inspects server blocks to find out

13-43



13 Debugging Discrete-Event Simulations

how many entities are in them. An entity in the server might be in service
or waiting to depart.

1 Begin a debugger session for a particular model by entering this command
at the MATLAB command prompt:

sedebug('sedemo_star_routing')

2 Proceed in the simulation. At the sedebug>> prompt, enter:

tbreak 5
cont

The output ends with a message describing the context of the simulation
shortly after T = 5:

Hit b1 : Breakpoint for first operation at or after time 5.000000

%==============================================================================%

Executing ServiceCompletion Event (ev29) Time = 5.189503930558476

: Entity = en4 Priority = 5

: Block = Distribution Center/Infinite Server

3 To find out how many entities are in each server that is currently busy
serving, use a series of state inspection and variable manipulation
commands:

% Get the event calendar.

eventcalendar = evcal;

% Combine executing and pending events, to search both.

allevents = [eventcalendar.ExecutingEvent; eventcalendar.PendingEvents];

% Find service completion events.

idx = cellfun(@(x) isequal(x,'ServiceCompletion'), {allevents.EventType});

svc_completions = allevents(idx);

% Find the unique server blocks.

svrs = unique({svc_completions.Block});

% Compute the number of server blocks.

13-44



Working with Debugging Information in Variables

num = length(svrs);

% Preallocate an array for the results.

n = zeros(1,num);

% Loop over the server blocks and find the number of entities

% in each block.

for jj=1:num

s = blkinfo(svrs{jj});

n(jj)=length(s.Entities);

disp(sprintf('%s: %d',svrs{jj},n(jj)))

end

The output is:

sedemo_star_routing/Distribution Center/Infinite Server: 1

sedemo_star_routing/Service Station 3/Infinite Server3: 1

sedemo_star_routing/Service Station 4/Infinite Server4: 2

4 End the debugger session. At the sedebug>> prompt, enter:

sedb.quit

13-45



13 Debugging Discrete-Event Simulations

Viewing the Event Calendar
To view a list of events on the event calendar of the currently executing
discrete-event system, at the sedebug>> prompt, enter this command:

evcal

The output in the Command Window includes the current simulation time
and a tabular display of all events in the event calendar. Each listing in
the event calendar display includes the event characteristics described in
“Optional Displays of Event Calendar in the Simulation Log” on page 13-10.

Each discrete-event system has its own event calendar. See “Discrete-Event
Simulation Using SimEvents in Simulink Models” for more information on
discrete-event systems. This means that one SimEvents model can have
multiple event calendars.

The event in progress or selected for execution appears with notation => to
the left of the event identifier. This event appears in the display until the
completion of all immediate consequences, and then the event is removed
from the calendar.

When comparing the simulation log with the event calendar display, the
sequence on the calendar and the sequence in which the events were
scheduled might differ, even for simultaneous events having equal priority.

For Further Information

• “Event Sequencing” on page 14-9

• “Example: Event Calendar Usage for a Queue-Server Model” on page 2-7

13-46



Customizing the Debugger Simulation Log

Customizing the Debugger Simulation Log

In this section...

“Customizable Information in the Simulation Log” on page 13-47

“Tips for Choosing Appropriate Detail Settings” on page 13-48

“Effect of Detail Settings on Stepping” on page 13-50

“How to View Current Detail Settings” on page 13-52

“How to Change Detail Settings” on page 13-52

“How to Save and Restore Detail Settings” on page 13-53

Customizable Information in the Simulation Log
You can configure the SimEvents debugger to include or omit certain kinds
of messages in its simulation log. You can focus on the messages that are
relevant to you by omitting irrelevant messages.

The overall configuration regarding including or omitting messages is
called the debugger’s detail settings. Each individual category of messages
that you can include or omit corresponds to an individual detail setting. A
particular detail setting is on if the simulation log includes messages in the
corresponding category.The setting is off if the simulation log omits messages
in the category.

The detail function lets you configure and view detail settings. The following
table lists the available detail settings and the programmatic names that you
see as inputs or field names when you use the detail function.

13-47



13 Debugging Discrete-Event Simulations

Category of
Messages

Programmatic
Name in detail
Function

Further Information About
Messages in Category

Event
operations,
except
independent
operations
representing
event
executions

ev “Event Scheduling, Execution, and
Cancelation Messages” on page 13-13

Entity
operations

en “Entity Operation Messages” on page
13-16

Event calendar
information

cal “Optional Displays of Event Calendar
in the Simulation Log” on page 13-10

Signal
operations

sig “Signal Operation Messages” on page
13-18

Messages that you cannot selectively omit from the simulation log include
messages about independent operations, such as the execution of events on
the event calendar. Messages about independent operations appear whenever
any of the detail settings is on. The reason for including messages about
independent operations is that they provide a context in which you can
understand other messages. To learn more about independent operations, see
“Independent Operations and Consequences in the Debugger” on page 13-21.

Tips for Choosing Appropriate Detail Settings
Different debugging scenarios benefit from different detail settings. Use these
suggestions to help you choose appropriate settings for your needs:

• When using step to proceed in the simulation, include event or entity
operations in the simulation log if you want the debugger to suspend the
simulation at such operations to let you inspect states.

• When using breakpoints to skip a large portion of the simulation that is
irrelevant to you, omitting all messages (detail none) can prevent the

13-48



Customizing the Debugger Simulation Log

Command Window from accumulating a lot of simulation log text that
does not interest you.

Tip If you use step from a breakpoint onward, turn on at least one of the
detail settings, or else you will likely step too far. For details, see “Effect
of Detail Settings on Stepping” on page 13-50.

• If you want to inspect final states but are not interested in the simulation
log, omit all messages (detail none) and then enter cont. The simulation
proceeds until the built-in breakpoint at the end of the simulation, with
minimal text in the simulation log.

• If you want to focus on entities instead of events, try
detail('en',1,'ev',0, 'sig', 0). The simulation log still
shows independent operations, but the dependent operations in the
simulation log exclude event scheduling, cancelation, and execution
operations.

• If you want to focus on events instead of entities,
try detail('en',0,'ev',1, 'sig', 0) or
detail('en',0,'ev',1,'sig',0,'cal',1).

• If you want to focus on signals instead,
try detail('en',0,'ev',0,'sig',1) or
detail('en',0,'ev',0,'sig',1,'cal',1).

• If you are not sure which messages in the simulation log might be useful
for later reference, consider these approaches:

- If you include less information in the simulation log, the simulation
might run more quickly and the simulation log might be more
manageable. However, you risk missing important information and
having to run the simulation again to see that information.

- If you include more information in the simulation log, it might be
harder for you to find the relevant portions. Using Edit > Find in the
Command Window might help you see the portions of interest to you.

• Reducing textual output in the Command Window can save time.

13-49



13 Debugging Discrete-Event Simulations

Effect of Detail Settings on Stepping
The behavior of detail and step are related. If you change the detail settings
from their default values to cause the simulation log to omit entity messages
or event messages, then you cannot step to an operation that corresponds to
an omitted message, unless a breakpoint coincides with the operation. A
specific example of this behavior follows.

If your detail settings cause the simulation log to omit all messages
(equivalent to the detail none command), you cannot step to anything other
than breakpoints. In the absence of breakpoints, a step causes the simulation
to proceed until the end. If you inadvertently reach the end of the simulation
in this way and want to return to the point in the simulation from which you
tried to step, use a time or event identifier that appears in the Command
Window to set a breakpoint in a subsequent debugging session. For example,
if the last message in the simulation log, before you inadvertently stepped
too far, indicates the execution of event ev5, then you can exit the debugger
session, restart it, and enter evbreak ev5; cont.

Example: Skipping Entity Operations When Stepping

When the detail setting for entity operations is off, the simulation log omits
messages about entity operations and you cannot step to entity operations.

1 Open and debug a model. At the MATLAB command prompt, enter:

simeventsdocex('doc_sldemo_f14_des')
sedebug('doc_sldemo_f14_des')

2 Omit entity operation messages. At the sedebug>> prompt, enter:

detail('en',0)

3 Proceed with the simulation. At the sedebug>> prompt, enter the following
command six times in succession:

step

The output reflects that when you step through the simulation, the
debugger does not suspend the simulation upon the entity’s generation,
advancement, attribute assignment, or destruction. The reason is that the
detail setting for entity operations is off.

13-50



Customizing the Debugger Simulation Log

Detected Sample Time Hit Time = 0.000000000000000

: Block = Subsystem/Event-Based Entity Generator

sedebug>> step

%..........................................................................%

Scheduling EntityGeneration Event (ev1)

: EventTime = 0.000000000000000 (Now)

: Priority = SYS1

: Entity = <none>

: Block = Subsystem/Event-Based Entity Generator

%==============================================================================%

Executing EntityGeneration Event (ev1) Time = 0.000000000000000

: Entity = <none> Priority = SYS1

: Block = Subsystem/Event-Based Entity Generator

sedebug>> step

%..........................................................................%

Scheduling ServiceCompletion Event (ev2)

: EventTime = 0.055383948677907

: Priority = 500

: Entity = en1

: Block = Subsystem/Infinite Server

%==============================================================================%

Executing ServiceCompletion Event (ev2) Time = 0.055383948677907

: Entity = en1 Priority = 500

: Block = Subsystem/Infinite Server

%==============================================================================%

Detected Sample Time Hit Time = 0.100000000000000

: Block = Subsystem/Event-Based Entity Generator

To see which entity operations the debugger omits, compare your output
with the items in the table in “Confirming Event-Based Behavior Using
the SimEvents Debugger” in the SimEvents getting started documentation.
Items 4, 5, 6, 7, 10, 11, and 12 in the table do not appear in this example
because these items represent entity operations.

4 End the debugger session. At the sedebug>> prompt, enter:

sedb.quit

13-51



13 Debugging Discrete-Event Simulations

How to View Current Detail Settings
To view the current detail settings in the Command Window, at the
sedebug>> prompt, enter:

detail

The output looks like this, where the on and off values depend on your
current detail settings:

Event Operations (ev) : on
Entity Operations (en) : off
Signal Operations (sig) : on
Event Calendar (cal) : off

If a line in the output says on, the simulation log shows the corresponding
type of message. Otherwise, the simulation log omits the corresponding type
of message.

How to Change Detail Settings
To change detail settings, enter a detail command that includes one or more
inputs. For available syntaxes, see the reference page for the sedb.detail
function.

Tips to help you select a suitable syntax are:

• To change one or more detail settings but not all detail settings, use inputs
that specify the name and new value of the detail settings you want to
change. Detail settings you omit from the syntax remain unchanged.

• To change all detail settings, use inputs that specify the name and new
value of all detail settings. One way to ensure that you include all settings
in the command is to use a structure variable containing the current
settings as a starting point. For an example, see Example: Including Event
Calendar Information Using a Structure on page 13-53.

• To make it easier to restore previous settings later, use a syntax that
includes an output. For details, see “How to Save and Restore Detail
Settings” on page 13-53.

13-52



Customizing the Debugger Simulation Log

• To learn which messages in the simulation log correspond to each detail
setting, see “Customizable Information in the Simulation Log” on page
13-47.

• For suggestions on choosing which messages to include or omit based
on your debugging situation, see “Tips for Choosing Appropriate Detail
Settings” on page 13-48.

Example: Including Event Calendar Information Using a
Parameter/Value Pair

To cause the simulation log to include event calendar information but not
change any other detail settings, at the sedebug>> prompt, enter:

detail('cal',1)

The output includes the following line confirming the change:

Event Calendar (cal) : on

Example: Including Event Calendar Information Using a Structure

Entering these commands at the sedebug>> prompt has the same effect as
the example above and also creates a structure variable, s, that records the
new detail settings:

s = detail; % Get current detail settings.
s.cal = 1; % Change value of cal field of structure s.
detail(s); % Use s to change cal detail setting.

How to Save and Restore Detail Settings
If you expect to change detail settings frequently or temporarily during a
debugger session, you can use an output from the detail function to facilitate
restoring previous settings. Use this procedure:

1 When changing detail settings, enter a detail command that includes an
output. The output variable records the settings before they change to
correspond to the inputs that you specify in your command.

2 When you want to restore the earlier detail settings, use the variable as
an input to detail.

13-53



13 Debugging Discrete-Event Simulations

As a special case, you can restore default detail settings. At the sedebug>>
prompt, enter detail default.

Example: Omitting and Reinstating Entity Messages

To cause the simulation log to include event calendar information and also
create a structure variable, prev, that records the previous detail settings, at
the sedebug>> prompt, enter:

prev = detail('cal',1) % Record settings and then change them.

The next command restores the earlier settings:

detail(prev) % Restore previous settings.

13-54



Debugger Efficiency Tips

Debugger Efficiency Tips

In this section...

“Executing Commands Automatically When the Debugger Starts” on page
13-55

“Creating Shortcuts for Debugger Commands” on page 13-56

Executing Commands Automatically When the
Debugger Starts
If you want to execute one or more commands in the debugger immediately
after initializing the model, you can include those commands when you invoke
sedebug. You might find executing commands automatically to be useful for
setting the same breakpoints or detail settings across multiple debugging
sessions, or helping someone reproduce a problem that you are seeing in a
model.

To start a debugger session that executes commands automatically:

1 Outside the debugger, create an empty options structure using the
se_getdbopts function.

opts_struct = se_getdbopts;

2 Define the StartFcn field of the options structure as a cell array of strings,
where each string is an individual command that you want to execute after
initializing the model. Here is an example:

opts_struct.StartFcn = {'detail(''cal'',1)', 'tbreak 5'};

3 Start a debugger session using the sedebug function with the options
structure as the second input argument. Here is an example:

sedebug('sedemo_preempt_policy', opts_struct)

4 End the debugger session. At the sedebug>> prompt, enter:

sedb.quit

For an example, see the se_getdbopts reference page.

13-55



13 Debugging Discrete-Event Simulations

Tips for Creating a StartFcn Cell Array

• If you want to execute commands and then exit the debugging session
automatically, include the string 'quit' at the end of the StartFcn array.
If you want to execute commands automatically and then interact with the
debugger, do not include the string 'quit' in the StartFcn array.

• If you want to set breakpoints at the beginning of the debugging session,
have just ended a debugging session on the same model and have not
changed the model, you can use the identifiers that occurred in the previous
debugging session.

Creating Shortcuts for Debugger Commands
If you use a particular debugger command frequently, such as step or
step over, a shortcut you can click might provide an efficient way to issue
the command repeatedly. To learn about shortcuts, see “Create MATLAB
Shortcuts to Rerun MATLAB Commands”in the MATLAB Desktop Tools and
Development Environment documentation.

13-56



Defining a Breakpoint

Defining a Breakpoint

In this section...

“What Is a Breakpoint?” on page 13-57

“Identifying a Point of Interest” on page 13-57

“Setting a Breakpoint” on page 13-59

“Viewing All Breakpoints” on page 13-61

What Is a Breakpoint?
In the SimEvents debugger, a breakpoint is a point of interest in the
simulation at which the debugger can suspend the simulation and let you
enter commands. You decide which points are of interest to you and then
use debugger functions to designate those points as debugging breakpoints.
After you define one or more breakpoints, you can use them to control the
simulation process efficiently. At the sedebug>> prompt, the cont command
causes the simulation to proceed until the next breakpoint, bypassing points
that you are not interested in and letting you inspect states at a point of
interest. To learn more about controlling the simulation after defining
breakpoints, see “Using Breakpoints During Debugging” on page 13-63.

Identifying a Point of Interest
Before defining a breakpoint, you must decide what points in the simulation
you want to inspect and then determine a way to refer to the point explicitly
when invoking a function to define a breakpoint. The SimEvents debugger
supports the following kinds of breakpoints.

13-57



13 Debugging Discrete-Event Simulations

Type of
Breakpoint

Debugger Suspends Simulation
Upon...

When You Might Use Breakpoint
Type

Timed
breakpoint

First operation whose associated time
is equal to or greater than the value of
the timed breakpoint

• You know a time at which something
of interest to you occurs

• Youwant to proceed in the simulation
by a fixed amount of time

• A point of interest is not associated
with an event on the event calendar
or a block in the model

• You do not have an event identifier
to use to define an event breakpoint

Event
breakpoint

Execution or cancelation of the specified
event

An event on the event calendar is a
point of interest

Block
breakpoint

Operation involving the specified
block, for blocks that support block
breakpoints

• You want to understand how a block
behaves

• A block seems to cause or reflect the
problem you are investigating

Entity
breakpoint

Operation that involves the specified
entity

An operation that involves the entity is
a point of interest

You cannot set a breakpoint for a Simulink controlled block. Instead, set the
breakpoint in the SimEvents block that initiates the signal execution.

Tips for Identifying Points of Interest

• To see a list of all events on the event calendar and their event identifiers,
at the sedebug>> prompt, enter evcal.

• To see a list of blocks in the model that support block breakpoints, at the
sedebug>> prompt, enter blklist. The list also shows the block identifiers.
(Note, the blklist output also contains the list of time-based blocks in
event-based systems. These blocks do not support blkbreak.) For a list of
block operations at which the debugger can suspend the simulation, see
“Block Operations Relevant for Block Breakpoints” on page 13-67.

13-58



Defining a Breakpoint

• To proceed in the simulation by a fixed amount of time, define a timed
breakpoint whose value is relative to the current simulation time using
syntax such as tbreak(simtime + fixed_amount). For an example, see
the sedb.simtime reference page.

To see a list of all entities and their IDs in a storage block, use blkinfo.
Use these IDs to set entity breakpoints.

• To investigate the behavior of a block only during particular time intervals,
use a combination of timed breakpoints and block breakpoints. During a
time interval of interest, the block breakpoint helps you investigate the
behavior of the block. When the simulation advances beyond that time
interval, you can disable the block breakpoint and use a timed breakpoint to
advance to another time interval of interest. To learn more about disabling
breakpoints, see “Ignoring or Removing Breakpoints” on page 13-64.

• To see all actions that happen at a particular time, use a pair of timed
breakpoints, as in “Using Nearby Breakpoints to Focus on a Particular
Time” on page 3-5.

• You might need or want to iteratively refine your points of interest across
multiple simulation runs. For example:

- A plot of a signal against time might indicate when something of interest
to you happens in the simulation. You can read the approximate time
from the plot. You can use the approximate time when defining a timed
breakpoint in a subsequent run of the simulation.

- You can use a pair of timed breakpoints to examine simulation behavior
in a time interval and find a relevant event on the event calendar. You
can use the event identifier when defining an event breakpoint in a
subsequent run of the simulation.

• An event breakpoint is not the same as a timed breakpoint whose value
equals the scheduled time of the event. The two breakpoints can cause
the simulation to stop at different points if the execution or cancelation of
the event is not the first thing that happens at that value of time. For an
example, see the sedb.evbreak reference page.

Setting a Breakpoint
After you have identified a point of interest, you can set a breakpoint by
entering one of the commands in the table.

13-59



13 Debugging Discrete-Event Simulations

Type of
Breakpoint

At sedebug>> Prompt, Enter...

Timed breakpoint
at simulation time
T = t0

tbreak(t0) or tbreak t0

Event breakpoint
at event whose
identifier is the
string, evid

evbreak(evid)

Block breakpoint
at block whose
identifier is the
string, blkid,
or whose path
name is the string,
blkname

blkbreak(blkid) or blkbreak(blkname)

Entity breakpoint
at entity whose
identifier is the
string, enid

enbreak(enid)

Warning When Setting Certain Breakpoints
The debugger warns you if it determines that it might not hit the breakpoint
that you want to define or if it does not recognize an event identifier that you
specify. The warning can alert you to a mistake in your command, but might
also follow a correct command. For example, suppose you obtain an event
identifier during one run of the simulation and set an event breakpoint on
that event in a subsequent run of the simulation, before the event has been
scheduled. Setting an event breakpoint before the event has been scheduled is
legitimate because event identifiers are the same from one debugging session
to the next. However, the debugger cannot distinguish this situation from a
mistake in your input argument to evbreak.

If you often intentionally set breakpoints that cause this warning and
you want to suppress such warnings in the future, enter warning off
last immediately after the warning occurs. For more information about

13-60



Defining a Breakpoint

this command, see “Warning Control”in the MATLAB Programming
Fundamentals documentation.

Viewing All Breakpoints
To see a tabular display of all breakpoints that you have set, at the sedebug>>
prompt, enter this command:

breakpoints

The output includes this information about each breakpoint.

Label Description

ID A token that uniquely identifies the breakpoint

Type Block, Event, Timed, or Entity

The block identifier of a block breakpoint

The event identifier of an event breakpoint

The time of a timed breakpoint

Value

The ID of the entry

yes, if the debugger considers the breakpoint when
determining where to suspend the simulation

Enabled

no, if the debugger ignores the breakpoint

The list of breakpoints does not guarantee that the simulation reaches each
point before the simulation ends. The sequence of breakpoints in the list
does not necessarily represent the sequence in which the simulation reaches
each point.

The list of breakpoints does not show a special built-in breakpoint that the
debugger always observes at the end of the simulation. You do not set this
breakpoint explicitly and you cannot disable or remove it.

13-61



13 Debugging Discrete-Event Simulations

Sample Breakpoint List

The sample output of breakpoints shows six breakpoints. Two are timed
breakpoints, one is an entity, one is an event breakpoint, and two are block
breakpoints. One of the block breakpoints is disabled.

List of Breakpoints:

ID Type Value Enabled
b1 Event ev4 yes
b2 Block blk11 yes
b3 Timed 100 yes
b4 Timed 101 yes
b5 Block blk15 no
b6 Entity en3 yes

To learn how to delete or disable breakpoints in the list, see “Ignoring or
Removing Breakpoints” on page 13-64.

To learn how to enable breakpoints in the list, see “Enabling a Disabled
Breakpoint” on page 13-65.

13-62



Using Breakpoints During Debugging

Using Breakpoints During Debugging

In this section...

“Running the Simulation Until the Next Breakpoint” on page 13-63

“Ignoring or Removing Breakpoints” on page 13-64

“Enabling a Disabled Breakpoint” on page 13-65

Running the Simulation Until the Next Breakpoint
By default, the debugger has a special built-in breakpoint at the end of the
simulation. You can define your own breakpoints, as described in “Defining a
Breakpoint” on page 13-57. To proceed in the simulation until the debugger
reaches the next breakpoint, at the sedebug>> prompt, enter this command:

cont

You cannot set breakpoints for Simulink controlled block. Instead, set the
breakpoint in the SimEvents block that initiates the signal execution.

Point at Which the Debugger Suspends the Simulation
When you enter a cont command, the debugger proceeds in the simulation
until it reaches the first point in the simulation that meets one of these
criteria:

• At or after specified time— The simulation time is equal to or greater
than the specified time of a timed breakpoint, and the point in the
simulation corresponds to an operation that the simulation log is able to
show.

If no event executions or relevant updates in signals at reactive ports
occur at the specified time of a timed breakpoint, the debugger reaches
that breakpoint when the simulation time is strictly later. For example, if
time-based blocks in a hybrid simulation have a discrete sample time of 1
and running the simulation without breakpoints causes the simulation log
to report operations only at T = 0, 2, 4,..., then a timed breakpoint at T =
3 is equivalent to a timed breakpoint at T = 4.

13-63



13 Debugging Discrete-Event Simulations

• At execution or cancelation — The simulation is about to execute or
cancel the specified event of an event breakpoint.

• At operation of a block— The block associated with a block breakpoint
is about to perform an operation that the simulation log is able to show. For
a list of block operations at which the debugger can suspend the simulation,
see “Block Operations Relevant for Block Breakpoints” on page 13-67.

• At operation on an entity — The block associated with a entity
breakpoint is about to perform an operation that the simulation log is able
to show. For a list of entity operations at which the debugger can suspend
the simulation, see “Block Operations Relevant for Block Breakpoints” on
page 13-67.

• At end — The simulation is about to end. This condition corresponds to
the built-in breakpoint at the end of the simulation.

The debugger reaches a given timed or event breakpoint zero or one time
during the simulation. The debugger can reach a given block or entity
breakpoint an arbitrary number of times during the simulation.

Unless all breakpoints are timed breakpoints, you might not be able to predict
which breakpoint the debugger reaches next. Even though events have
scheduled times, the debugger might reach an event breakpoint upon the
cancelation of an event. You might not be able to predict the cancelation.

Ignoring or Removing Breakpoints
The table describes options for preventing the debugger from observing a
particular breakpoint.

13-64



Using Breakpoints During Debugging

Treatment of
Breakpoints

At sedebug>>
Prompt, Enter...

Result

Ignore a particular
breakpoint while
keeping it in the list of
breakpoints and being
able to reinstate it
easily

disable b1, where
b1 is the breakpoint
identifier

The list of breakpoints
indicates the
breakpoint as disabled
and the debugger
does not observe the
breakpoint. You can
reverse this operation
using enable b1.

Ignore a particular
breakpoint without
keeping it in the list
of breakpoints and
without being able to
reinstate it easily

bdelete b1, where
b1 is the breakpoint
identifier

The breakpoint no
longer appears in the
list of breakpoints, so
the debugger does not
observe it.

Ignore all timed and
event breakpoints and
run the simulation until
the end

runtoend The simulation runs
to completion and the
debugger session ends.

To view breakpoint identifiers, at the sedebug>> prompt, enter breakpoints.

Tip You can apply disable, enable, or bdelete to multiple breakpoints in
one command by using all or a cell array as an input argument. For exact
syntax, see the reference page for each function.

Enabling a Disabled Breakpoint
To reinstate a breakpoint that you previously disabled:

1 View breakpoint identifiers. At the sedebug>> prompt, enter this command:

breakpoints

2 Enter a command like the following, replacing b1 with the identifier of the
breakpoint that you want to reinstate:

13-65



13 Debugging Discrete-Event Simulations

enable b1

You might want to disable and enable a breakpoint to focus on behavior of a
block during a particular time interval. A block breakpoint helps you focus
on that block. Disabling the block breakpoint, when the simulation time is
outside the time interval of interest, helps you focus on only those periods
that are relevant to you.

13-66



Block Operations Relevant for Block Breakpoints

Block Operations Relevant for Block Breakpoints
For each block that supports block breakpoints, the following lists indicate
the operations that the block can perform. These operations are the only
operations that appear in the debugger simulation log and that can cause
the debugger to suspend the simulation at a block breakpoint. The actual
operations that occur during a given simulation depend on block configuration
and simulation behavior.

Attribute Function

• Entity advancing

• Setting attribute on entity

Attribute Scope

• Destroying entity

• Canceling event

• Entity advancing

Cancel Timeout

• Canceling event

• Entity advancing

Discrete Event Signal to Workspace

• Executing discrete-event signal to workspace

Enabled Gate

• Scheduling event

• Executing event

• Entity advancing

• Detected signal update

Entity Combiner

• Destroying entity

13-67



13 Debugging Discrete-Event Simulations

• Entity advancing

• Combining entities

• Canceling event

Entity Departure Counter

• Scheduling event

• Executing event

• Entity advancing

• Detected signal update

Entity Departure Function-Call Generator

• Entity advancing

Entity Sink

• Destroying entity

• Canceling event

• Entity advancing

Entity Splitter

• Destroying entity

• Entity advancing

• Splitting entity

• Canceling event

Event-Based Entity Generator

• Generating entity

• Scheduling event

• Executing event

• Detected signal update

• Canceling event

13-68



Block Operations Relevant for Block Breakpoints

Event Filter

• Scheduling event

• Executing event

• Detected signal update

• Executing subsystem

FIFO Queue

• Entity advancing

• Queuing entity

• Scheduling event

• Executing event

Get Attribute

• Entity advancing

Infinite Server

• Scheduling event

• Executing event

• Entity advancing

• Canceling event

Input Switch

• Scheduling event

• Executing event

• Entity advancing

• Detected signal update

Instantaneous Entity Counting Scope

• Destroying entity

• Canceling event

13-69



13 Debugging Discrete-Event Simulations

• Entity advancing

Instantaneous Event Counting Scope

• Executing scope

LIFO Queue

• Entity advancing

• Queuing entity

• Scheduling event

• Executing event

N-Server

• Scheduling event

• Executing event

• Entity advancing

• Canceling event

Output Switch

• Scheduling event

• Executing event

• Entity advancing

• Detected signal update

Path Combiner

• Scheduling event

• Executing event

• Entity advancing

• Detected signal update

Priority Queue

• Entity advancing

13-70



Block Operations Relevant for Block Breakpoints

• Queuing entity

• Scheduling event

• Executing event

Read Timer

• Entity advancing

• Reading timer on entity

Release Gate

• Scheduling event

• Executing event

• Entity advancing

• Detected signal update

Replicate

• Destroying entity

• Scheduling event

• Executing event

• Entity advancing

• Replicating entity

Schedule Timeout

• Scheduling event

• Executing event

• Entity advancing

Set Attribute

• Entity advancing

• Setting attribute on entity

13-71



13 Debugging Discrete-Event Simulations

Signal Latch

• Scheduling event

• Executing event

• Detected signal update

• Executing memory read

• Executing memory write

Signal Scope

• Executing scope

Signal-Based Function-Call Event Generator

• Scheduling event

• Executing event

• Detected signal update

• Executing function call

Single Server

• Scheduling event

• Executing event

• Canceling event

• Entity advancing

• Preempting entity

Start Timer

• Entity advancing

• Starting timer on entity

Time-Based Entity Generator

• Generating entity

• Scheduling event

13-72



Block Operations Relevant for Block Breakpoints

• Executing event

• Entity advancing

X-Y Attribute Scope

• Destroying entity

• Canceling event

• Entity advancing

X-Y Signal Scope

• Executing scope

13-73



13 Debugging Discrete-Event Simulations

Animating

In this section...

“Introduction” on page 13-74

“Starting and Stopping Animation” on page 13-75

“Animating Signals and Entities” on page 13-75

“Controlling Animation Speed” on page 13-76

“Animating the Output Switching Using Signal Model” on page 13-76

Introduction
The animation capability animates the entities and signals in a SimEvents
model. With animation, you can observe SimEvents entities and signals as
they move through the model. This behavior is enabled by default in the
debugger. With animation, you can observe the following operations listed
in this table.

Animation Icon Operation

Entity advancing through the block.

Path history for the currently active entity motion.
In the case of a virtual subsystem, this icon indicates
that the entity is advancing within the subsystem; to
observe that animation, open the subsystem. When
the darker icon appears outside the subsystem, it
indicates that the entity has exited the subsystem.

Signal update currently being executed.

Signal blocks executed so far for currently independent
operation. In the case of a virtual subsystem, this icon
indicates that the signal updates are occurring within
the subsystem; to observe that animation, open the
subsystem. When the darker icon appears outside the
subsystem, it indicates that the signal has exited the
subsystem.

13-74



Animating

Enabling entity animation also displays the number of entities currently in
the storage block in the bottom left corner of the block icon, as follows. This
text appears on all storage blocks in the model. The software updates this
number as simulation proceeds.

In this block, the 0 of 1 indicates that no entity is currently in the storage
block.

Use the sedb.animate command to control animation settings. For example,
you can turn the animation off and on, control the animation speed, and so
forth.

Starting and Stopping Animation
By default, animation of a SimEvents model is enabled without the debugger.
To view the animation, in the MATLAB Command Window, start the
debugger for that model (sedebug('model').

At the debugger prompt, to disable animation, type:

animate off

To restart animation, type:

animate on

Alternatively, you can type animate to toggle animation on and off.

Animating Signals and Entities
The sedb.detail command controls the amount of animation content in the
model. By default, animation is enabled for signals and entities.

13-75



13 Debugging Discrete-Event Simulations

If you want to disable the animation of entities and signals, use the detail to
disable them. For example:

detail('en', 0, 'sig', 0);

This command also disables all animation. Turning off entity details also
turns off the display of the number of entities currently in storage blocks.

Controlling Animation Speed
By default, the animation delay is 0.0 seconds. You can change the animation
speed by specifying a value between 0.0 and 5.0 seconds as the animation
delay. For example, the following command slows the animation to update
every 5 seconds:

animate 5.0

If you turn off the animation and then turn it on again, the animation delay is
that of the previously specified delay value.

Animating the Output Switching Using Signal Model
To use the SimEvents debugger to animate the Output Switching Using
Signal model:

1 Begin a debugger session for the model. At the MATLAB command prompt,
type:

sedemo_outpoutswitch
sedebug('sedemo_outputswitch')

2 Turn on animation with a delay of 0.5 seconds.

animate on 0.5

3 Simulate the model to the end.

runtoend

4 Observe the animation in the model, as illustrated.

13-76



Animating

13-77



13 Debugging Discrete-Event Simulations

Common Problems in SimEvents Models

In this section...

“Unexpectedly Simultaneous Events” on page 13-78

“Unexpectedly Nonsimultaneous Events” on page 13-78

“Unexpected Processing Sequence for Simultaneous Events” on page 13-79

“Unexpected Use of Old Value of Signal” on page 13-80

“Effect of Initial Value on Signal Loops” on page 13-82

“Loops in Entity Paths Without Sufficient Storage Capacity” on page 13-85

“Unexpected Timing of Random Signal” on page 13-88

“Unexpected Correlation of Random Processes” on page 13-90

“Blocks that Require Event-Based Signal Input” on page 13-91

Unexpectedly Simultaneous Events
An unexpected simultaneity of events can result from roundoff error in event
times or other floating-point quantities, and might cause the processing
sequence to differ from your expectation about when each event should
occur. Computers’ use of floating-point arithmetic involves a finite set of
numbers with finite precision. Events scheduled on the event calendar for
times T and T+Δt are considered simultaneous if 0 ≤ Δt ≤ 128*eps*T, where
eps is the floating-point relative accuracy in MATLAB software and T is
the simulation time.

If you have a guess about which events’ processing is suspect, adjusting
event priorities or using the Instantaneous Event Counting Scope block can
help you diagnose the problem. For examples involving event priorities,
see “Example: Choices of Values for Event Priorities” on page 3-11. For an
example using the Instantaneous Event Counting Scope block, see “Example:
Counting Events from Multiple Sources” on page 2-32.

Unexpectedly Nonsimultaneous Events
An unexpected lack of simultaneity can result from roundoff error in event
times or other floating-point quantities. Computers’ use of floating-point

13-78



Common Problems in SimEvents® Models

arithmetic involves a finite set of numbers with finite precision. Events
scheduled on the event calendar for times T and T+Δt are considered
simultaneous if 0 ≤ Δt ≤ 128*eps*T, where eps is the floating-point relative
accuracy in MATLAB software and T is the simulation time.

If roundoff error is very small, the scope blocks might not reveal enough
precision to confirm whether events are simultaneous or only close. An
alternative technique is to use the Discrete Event Signal to Workspace block
to collect data in the MATLAB workspace.

If your model requires that certain events be simultaneous, use modeling
techniques aimed at effecting simultaneity. For an example, see “Example:
Choices of Values for Event Priorities” on page 3-11.

Unexpected Processing Sequence for Simultaneous
Events
An unexpected sequence for simultaneous events could result from the
arbitrary or random handling of events having equal priorities, as described
in “Processing Sequence for Simultaneous Events” on page 14-9. The
sequence might even change when you run the simulation again. When the
sequence is arbitrary, do not make any assumptions about the sequence or
its repeatability.

If you copy and paste blocks that have an event priority parameter, the
parameter values do not change unless you manually change them.

An unexpected processing sequence for simultaneous block operations,
including signal updates, could result from interleaving of block operations.
For information and examples, see “Interleaving of Block Operations” on
page 14-36.

The processing sequence for simultaneous events could have unexpected
consequences in the simulation. To learn more about the processing sequence
that occurs in your simulation, use the SimEvents debugger. For tips on using
the debugger to examine the processing sequence for simultaneous events,
see “Exploring Simultaneous Events” on page 3-4.

To learn which events might be sensitive to priority, try perturbing the model
by using different values of blocks’ Resolve simultaneous signal updates

13-79



13 Debugging Discrete-Event Simulations

according to event priority or Event priority parameters. Then run the
simulation again and see if the behavior changes.

Unexpected Use of Old Value of Signal
During a discrete-event simulation, multiple events or signal updates can
occur at a fixed value of the simulation clock. If these events and signal
updates are not processed in the sequence that you expect, you might notice
that a computation or other operation uses a signal value from a previous
time instead of from the current time. Some common situations occur when:

• A block defers the update of an output signal until a departing entity has
either finished advancing to a subsequent storage block or been destroyed,
but an intermediate nonstorage block in the sequence uses that signal in a
computation or to control an operation. Such deferral of updates applies to
most SimEvents blocks that have both an entity output port and a signal
output port.

For examples, see “Example: Using a Signal or an Attribute” on page 13-80
and the Managing Race Conditions demo.

For details, see “Interleaving of Block Operations” on page 14-36.

For a technique you can use when the situation involves the Output Switch
block’s p input signal, see “Using the Storage Option to Prevent Latency
Problems” on page 6-2.

• A computation involving multiple signals is performed before all of the
signals have been updated.

For details and an example, see “Update Sequence for Output Signals” on
page 14-42.

If you want notification of some of these situations, use the configuration
parameters related to race conditions. For details, see “SimEvents Diagnostics
Pane”.

Example: Using a Signal or an Attribute
The goal in the next model is to use a service time of N seconds for the Nth
entity. The Entity Counter block stores each entity’s index, N, in an attribute.
The top portion of the model uses the attribute directly to specify the service
time. The bottom portion creates a signal representing the attribute value

13-80



Common Problems in SimEvents® Models

and attempts to use the signal to specify the service time. These might appear
to be equivalent approaches, but only the top approach satisfies the goal.

The plot of the time in the bottom server block and a warning message in the
Command Window both reveal a modeling error in the bottom portion of the
model. The first entity’s service time is 0, not 1, while the second entity’s
service time is 1, not 2. The discrepancy between entity index and service
time occurs because the Get Attribute block processes the departure of the
entity before the update of the signal at the A1 signal output port. That is,
the server computes the service time for the newly arrived entity before the
A1 signal reflects the index of that same entity. For more information about
this phenomenon, see “Interleaving of Block Operations” on page 14-36.

13-81



13 Debugging Discrete-Event Simulations

The top portion of the model, where the server directly uses the attribute
of each arriving entity, uses the expected service times. The sequential
processing of an entity departure and a signal update does not occur because
each entity carries its attributes with it.

Tip If your entity possesses an attribute containing a desired service time,
switching criterion, timeout interval, or other quantity that a block can obtain
from either an attribute or signal, use the attribute directly rather than
creating a signal with the attribute’s value and having to ensure that the
signal is up-to-date when the entity arrives.

Effect of Initial Value on Signal Loops
When you create a loop in a signal connection, consider the effect of initial
values. If you need to specify initial values for event-based signals, see
“Specifying Initial Values of Event-Based Signals” on page 4-14.

Example: Incorrect Initial Value in Signal Loop
In the following model , the second server’s #n signal has no updates before
the first entity arrival there. As a result, the subsystem, whose role is to
perform a computation on the #n signal, does not execute before the first
entity arrival at the server. However, no entity can arrive at the server until
the gate opens. This logic causes entities to accumulate in the queue instead
of advancing past the gate and to the servers.

13-82



Common Problems in SimEvents® Models

A better model defines a positive initial value for the en input signal to the
gate. Note that the value in the display is the result of a numerical roundup
of the final time.

Example: Faulty Logic in Feedback Loop
The following model generates no entities because the logic is circular. The
entity generator is waiting for a change in its input signal, but the server’s
output signal never changes until an entity arrives or departs at the server.

13-83



13 Debugging Discrete-Event Simulations

To use the SimEvents debugger to see that the example has a modeling error:

1 Begin a debugger session for the model. At the MATLAB command prompt,
enter:

simeventsdocex('doc_ic_noentities')
sedebug('doc_ic_noentities')

2 Run the entire simulation. At the sedebug>> prompt, enter:

runtoend

If the simulation generated entities, the debugger would display messages
in the Command Window to indicate that. The lack of output in this case
shows that the simulation generates no entities.

A better model provides the first entity in a separate path. In the revised
model, the Time-Based Entity Generator block generates exactly one entity
during the simulation, at T=0.

13-84



Common Problems in SimEvents® Models

You can use the debugger again to confirm that the revised model
generates entities. If you use the preceding procedure, but substitute
'doc_ic_no_entities_fix' in place of 'doc_ic_no_entities', you can see
that the debugger reports entity generations and other operations during
the simulation of the revised model.

Loops in Entity Paths Without Sufficient Storage
Capacity
An entity path that forms a loop should contain storage that will not become
exhausted during the simulation. Storage blocks include queues and servers;
for a list of storage blocks, see “Storage and Nonstorage Blocks” on page
14-46. The following example illustrates how the storage block can prevent
a deadlock.

Example: Deadlock Resulting from Loop in Entity Path
The following model contains a loop in the entity path from the Output Switch
block to the Path Combiner block. The problem occurs when the switch selects
the entity output port OUT2. The entity attempting to depart from the server
looks for a subsequent storage block where it can reside. It cannot reside in
a routing block. Until the entity confirms that it can advance to a storage
block or an entity-destroying block, the entity cannot depart. However, until
it departs, the server is not available to accept a new arrival. The result is
a deadlock.

13-85



13 Debugging Discrete-Event Simulations

To use the SimEvents debugger to identify the deadlock:

1 Begin a debugger session for the model. At the MATLAB command prompt,
enter:

simeventsdocex('doc_loop')
sedebug('doc_loop')

2 Run the simulation until the built-in breakpoint at the end of the
simulation. At the sedebug>> prompt, enter:

cont

The debugger displays log messages in the Command Window so you can
see what happens in the simulation. The latest time stamp in the messages
is at T = 3:

%==============================================================================%

Executing EntityGeneration Event (ev1) Time = 3.000000000000000

: Entity = <none> Priority = 300

: Block = Time-Based Entity Generator

%..........................................................................%

Generating Entity (en1)

: Block = Time-Based Entity Generator

Hit built-in breakpoint for the end of simulation.

The lack of log messages after T = 3 reflects the deadlock.

13-86



Common Problems in SimEvents® Models

3 If you inspect the final state of the switch, you see that it selects the entity
output port OUT2:

blkinfo('doc_loop/Output Switch')

The output is:

Output Switch Current State T = 10.000000000000000

Block (blk2): Output Switch

Advancing Entity = <none>

Selected Output Port = 1

4 If you inspect the final state of the server, you see that it is holding an
entity that completed its service at T=2:

blkinfo('doc_loop/Single Server')

The output is:

Single Server Current State T = 10.000000000000000

Block (blk5): Single Server

Entities (Capacity = 1):

Pos ID Status Event EventTime

1 en6 Service Completed ev51 11

5 End the debugger session. At the sedebug>> prompt, enter:

sedb.quit

A better model includes a server with a service time of 0 in the looped entity
path. This storage block provides a place for an entity to reside after it departs
from the Output Switch block. After the service completion event is processed,
the entity advances to the Path Combiner block and back to the Single Server
block. The looped entity path connects to the Path Combiner block’s IN1
entity input port, not IN2. This ensures that entities on the looped path, not
new entities from the queue, arrive back at the Single Server block.

13-87



13 Debugging Discrete-Event Simulations

Unexpected Timing of Random Signal
When you use the Event-Based Random Number block to produce a random
event-based signal, the block infers from a subsequent block the events upon
which to generate a new random number from the distribution. The sequence
of times at which the block generates a new random number depends on the
port to which the block is connected and on events occurring in the simulation.
To learn how to use this block, see “Generating Random Signals” on page 4-4.

Example: Invalid Connection of Event-Based Random Number
Generator
The following model is incorrect because the Event-Based Random Number
block cannot infer from the p input port of an Output Switch block when to
generate a new random number. The Output Switch block is designed to
listen for changes in its p input signal and respond when a change occurs.
The Output Switch cannot cause changes in the input signal value or tell the
random number generator when to generate a new random number. The
p input port of the Output Switch block is called a reactive port and it is
not valid to connect a reactive signal input port to the Event-Based Random
Number block.

13-88



Common Problems in SimEvents® Models

If you want to generate a new random number corresponding to each entity
that arrives at the switch, a better model connects the Event-Based Random
Number block to a Set Attribute block and sets the Output Switch block’s
Switching criterion parameter to From attribute. The random number
generator then generates a new random number upon each entity arrival at
the Set Attribute block. The connection of the Event-Based Random Number
block to the A1 input port of the Set Attribute block is a supported connection
because the A2 port is a notifying port. To learn more about reactive ports
and notifying ports, see the reference page for the Event-Based Random
Number block.

13-89



13 Debugging Discrete-Event Simulations

Unexpected Correlation of Random Processes
An unexpected correlation between random processes can result from
nonunique initial seeds in different dialog boxes. If you copy and paste blocks
that have an Initial seed or Seed parameter, the parameter values do not
change unless you manually change them. Such blocks include:

• Time-Based Entity Generator

• Event-Based Random Number

• Entity Splitter

• Blocks in the Routing library

• Uniform Random Number

• Random Number

• Masked subsystems that include any of the preceding blocks

Detecting Nonunique Seeds and Making Them Unique
To detect and correct some nonunique initial seeds, use a diagnostic setting:

1 Open the Configuration Parameters dialog box for the model using
Simulation > Configuration Parameters.

2 Navigate to the SimEvents Diagnostics pane of the dialog box.

3 Set Identical seeds for random number generators to warning.

When you run the simulation, the application checks for nonunique Initial
seed parameter values in SimEvents library blocks. Upon detecting any, the
application issues a warning message that includes instructions for solving
the problem.

13-90



Common Problems in SimEvents® Models

Exceptions You must monitor seed values manually if your model contains
random-number-generating blocks that come from libraries other than the
SimEvents libraries.

To learn how to query and change seed values of such blocks, use the
techniques illustrated in “Working with Seeds Not in SimEvents Blocks” on
page 11-27.

Blocks that Require Event-Based Signal Input
If a SimEvents model contains a block that operates directly on an event-based
signal, that block must be part of an event execution for it to update its output.
Modify the model if the block cannot update its output during a simulation.
An example block is an Atomic Subsystem block that does not have any input.

For such blocks to update their outputs during simulation, connect block
input ports to event-based signals.

13-91



13 Debugging Discrete-Event Simulations

Recognizing Latency in Signal Updates
In some cases, the updating of an output signal or the reaction of a block to
updates in its input signal can experience a delay:

• The update of an output signal in one block might occur after other
operations occur at that value of time, in the same block or in other blocks.
This latency does not last a positive length of time, but might affect your
simulation results. For details and an example, see “Interleaving of Block
Operations” on page 14-36.

• The reaction of a block to an update in its input signal might occur after
other operations occur at that value of time, in the same block or in other
blocks. This latency does not last a positive length of time, but might
affect your simulation results. For details, see “Choosing How to Resolve
Simultaneous Signal Updates” on page 14-14.

• When the definition of a statistical signal suggests that its value can vary
continuously as simulation time elapses, the block increases efficiency by
updating the signal value only at key moments during the simulation. As a
result, the signal has a somewhat outdated “approximate” value between
such key moments, but corrects the value later.

The primary examples of this phenomenon are the signals that represent
time averages, such as a server’s utilization percentage. The definitions
of time averages involve the current time, but simulation performance
would suffer drastically if the block recomputed the percentage at each
time-based simulation step. Instead, the block recomputes the percentage
only under these circumstances:

- Upon the arrival or departure of an entity

- When the simulation ends

- When you pause the simulation using Simulation > Pause or other
means

For an example, see the reference page for the Single Server block.

When plotting statistics that, by definition, vary continuously as simulation
time elapses, consider using a continuous-style plot. For example, set Plot
type to Continuous in the Signal Scope block.

13-92



14

Learning More About
SimEvents Software

Complementing the information in “How Simulink Works” and “Simulating
Dynamic Systems” in the Simulink documentation, this section describes
some aspects that are different for models that involve event-based processing.

• “Execution of Blocks Having Event-Based Input Signals” on page 14-2

• “Event Sequencing” on page 14-9

• “Choosing How to Resolve Simultaneous Signal Updates” on page 14-14

• “Resolution Sequence for Input Signals” on page 14-15

• “Livelock Prevention” on page 14-23

• “Signal-Based Event Cycle Prevention” on page 14-25

• “Notifications and Queries Among Blocks” on page 14-29

• “Notifying, Monitoring, and Reactive Ports” on page 14-32

• “Interleaving of Block Operations” on page 14-36

• “Update Sequence for Output Signals” on page 14-42

• “SimEvents Support for Simulink Subsystems” on page 14-45

• “Storage and Nonstorage Blocks” on page 14-46

• “Blocks That Support Event-Based Input Signals” on page 14-48



14 Learning More About SimEvents® Software

Execution of Blocks Having Event-Based Input Signals

In this section...

“Response to Event-Based Input Signals” on page 14-2

“Arbitrary Execution Sequences” on page 14-5

Response to Event-Based Input Signals
When a computational block or sink block has event-based input signals,
the simulation process is slightly different from the process in “Simulating
Dynamic Systems” in the Simulink documentation. The loop iteration process
does not necessarily invoke Outputs methods and Update methods at each
time step for a block that has event-based input signals. Instead, such a
block executes only when an event-based input signal executes the block.
The following table describes the circumstances under which an event-based
input signal executes the block.

Event-Based Input Signal When Signal Executes Block

Function-call signal Upon each function call.

Signal that connects Event Filter block to
Atomic Subsystem block, where the Event
Filter block has the Execute downstream
blocks upon signal-based events option
selected

The atomic subsystem executes upon each
event that meets your criteria in the Type of
signal-based event and other parameters of
the Event Filter block.

Sample time hits that do not meet your criteria
do not execute the atomic subsystem. However,
the values of the signal are visible if another
input signal executes the subsystem.

Signal that connects Event Filter block to
Atomic Subsystem block, where the Event
Filter block has the Execute downstream
blocks upon signal-based events option
deselected

The signal never causes the atomic subsystem
to execute.

Values of the signal are visible to the subsystem
if another input signal executes the subsystem.

All other event-based signals Upon each sample time hit.

14-2



Execution of Blocks Having Event-Based Input Signals

Example: Execution of a Computational Block
In the following model from “Example: Resetting an Average Periodically”
on page 11-12, the Atomic Subsystem block performs a computation on
event-based input signals.

14-3



14 Learning More About SimEvents® Software

During the loop iteration process of the simulation, when an input signal
executes the Atomic Subsystem block, the subsystem performs its computation
and updates its output signals. For example, each time a customer leaves the
queuing system, the #d signal has a sample time hit. This signal executes
the Atomic Subsystem block, whose computation uses the latest values of
all the input signals.

Input signals can potentially execute the Atomic Subsystem block multiple
times at the same value of the simulation clock. In that case, the subsystem
performs its computation multiple times. For example:

• If the 4th and 5th customers leave the queuing system simultaneously, the
#d signal has two successive sample time hits at the same value of the
simulation clock. The #d signal executes the Atomic Subsystem block twice:
first with a #d value of 4 and then with a #d value of 5. When performing
the computation with a #d value of 4, the subsystem does not know that
the signal will change again before the simulation clock moves ahead.

• If a customer leaves the queuing system simultaneously with a reset of
the average, the #d and reset signals both have sample time hits at the
same value of the simulation clock. Suppose the simulation processes the
sample time hit of the #d signal first. The #d signal executes the Atomic
Subsystem block. The computation uses the new value of #d and the
latest value of reset (before the sample time hit of reset). The subsystem
does not know that the reset signal will change before the simulation
clock moves ahead. After the reset signal has its sample time hit, the
reset signal executes the Atomic Subsystem block. In this instance, the
computation uses the new value of reset and the latest value of #d.

The Event Filter block has the Execute downstream blocks upon
signal-based events option deselected. As a result, the et signal never
executes the Atomic Subsystem block. This design is appropriate because the
Read Timer block always updates its et and #d output signals simultaneously,
with the et update occurring before the #d update. The computation caused
by the #d input signal uses the latest value of the et input signal that
corresponds to the departure of a customer from the queuing system.

If no input signal executes the Atomic Subsystem block at a given time during
the simulation, the subsystem does not perform the computation at that time.

14-4



Execution of Blocks Having Event-Based Input Signals

Arbitrary Execution Sequences
In some modeling situations, the sequence in which signals execute blocks is
arbitrary and you should not make any assumptions about the sequence or its
repeatability. An arbitrary sequence might have no effect on your simulation
behavior, or it might contribute to behavior in which computations use signal
values that are not yet up to date.

The table describes some common situations for blocks that are not in atomic
subsystems.

Description Execution Sequence Example

A block has multiple
event-based input signals
coming from different
blocks.

Each input signal executes the
block separately. If multiple
input signals execute the block
simultaneously with no logical or
priority-related reason why one
signal must execute the block
first, the sequence is arbitrary.

Assume all signals have
simultaneous sample time hits.

Without additional logical or
priority-related information from
other blocks in the model, you
cannot determine the sequence
in which the input signals
execute the Add block.

Tip

You can prevent a situation
in which one signal executes
the Add block before the other
signals have up-to-date values.

14-5



14 Learning More About SimEvents® Software

Description Execution Sequence Example

Put all four blocks in an Atomic
Subsystem block.

A block in the Simulink
libraries has multiple
event-based output
signals that connect
to a single block.

The first output signal executes
the subsequent block. Then the
second output signal executes
the subsequent block, and so
on. The nth output signal is the
signal from the signal output
port with index n.

First, the x signal executes fcn2.
Next, the y signal executes fcn2.

Tip

You can prevent x from executing
the function before y has an
up-to-date value. Put both
MATLAB Function blocks in an
Atomic Subsystem block.

A block in the SimEvents
libraries has multiple
event-based output
signals that connect
to a single block.

On the SimEvents block
reference page, find the
documented order of update
of the output signals that
connect to a single block.

If the order values are distinct,
they dictate the sequence in
which the signals execute the
subsequent block.

If the order values are
nondistinct, the sequence in
which the signals execute the
subsequent block is arbitrary.

You cannot determine whether
A1 or A2 executes the function
first.

Tip

Depending on the other contents
of the model, you might be able
to prevent a situation in which
one of the signals executes the
function before the other signal
has an up-to-date value. Put
the MATLAB Function block
inside an Atomic Subsystem
block. On each signal line that

14-6



Execution of Blocks Having Event-Based Input Signals

Description Execution Sequence Example

connects to an input port of
the subsystem, insert an Event
Filter block and select the
Resolve simultaneous signal
updates according to event
priority option.

A branched signal is an
input to multiple different
blocks.

The signal executes each of
the blocks. The sequence is
arbitrary.

If the blocks have a subsequent
direct or indirect connection
elsewhere in the model, the
execution sequence might affect
your simulation results.

If the blocks have no subsequent
direct or indirect connection,
the execution sequence does not
affect your simulation results.

The signal executes each of the
Bias blocks. The sequence is
arbitrary.

Tip

An example in which the
sequence affects the simulation
results is when the two Bias
blocks connect to a single Divide
block. In that case, you can
prevent the Divide block from
executing before one of its inputs
has an up-to-date value. Perform
the entire computation in an
Atomic Subsystem block.

A branched signal is an
input to multiple input
ports of the same block.

The signal executes the block
multiple times.

The signal executes the function
twice.

14-7



14 Learning More About SimEvents® Software

Description Execution Sequence Example

Tip

To prevent duplicate sample
time hits of the z signal, put both
blocks in an Atomic Subsystem
block.

For computational blocks inside an Atomic Subsystem block that has an
event-based input signal, certain execution sequences might be arbitrary.
However, you can use the Format > Block Displays > Sorted Order
feature to determine the sequence.

14-8



Event Sequencing

Event Sequencing

In this section...

“Processing Sequence for Simultaneous Events” on page 14-9

“Role of the Event Calendar” on page 14-10

“For Further Information” on page 14-12

Processing Sequence for Simultaneous Events
Even if simultaneous events occur at the same value of the simulation
clock, the application processes them sequentially. The processing sequence
must reflect causality relationships among events. This table describes the
multiple-phase approach the application uses to determine a processing
sequence for simultaneous events for which causality considerations alone do
not determine a unique correct sequence.

Phase Events Processed in This
Phase

Processing Sequence for
Multiple Events in This Phase

1 Events not scheduled on the
event calendar

Arbitrary.

2 Events with priority SYS1 Same as the scheduling sequence
(FIFO).

3 Events with priority SYS2 Same as the scheduling sequence
(FIFO).

4 Events with numerical priority
values

Ascending order of priority
values.

For equal-priority events, the
sequence is random or arbitrary,
depending on the model’s
Execution order parameter.

When the sequence is arbitrary, you should not make any assumptions about
the sequence or its repeatability.

14-9



14 Learning More About SimEvents® Software

The events with priority SYS1 enable the application to detect multiple signal
updates before reacting to any of them. The events with priority SYS2 enable
entities to advance in response to state changes.

For suggestions on how to use the information in the table when creating
models, see “Choosing an Approach for Simultaneous Events” on page 3-7.

Role of the Event Calendar
During a simulation, the application maintains a list, called the event
calendar, of selected upcoming events that are scheduled for the current
simulation time or future times. By referring to the event calendar, the
application executes events at the correct simulation time and in an
appropriate sequence.

The table below indicates which events are scheduled or might be scheduled
on the event calendar. In some cases, you have a choice.

14-10



Event Sequencing

Event Name Event Type in
Debugger

Scheduled
On Event
Calendar

How to Schedule Event on Event
Calendar

Counter reset CounterReset Yes

Delayed restart DelayedRestart Yes

Entity
advancement

No

Entity
destruction

No

Entity
generation

EntityGeneration Yes

Entity request EntityRequest Yes

Function call FunctionCall Maybe Select Resolve simultaneous
signal updates according to event
priority, if present, in the dialog
box of the block that generates the
function call. If the dialog box has no
such option, the function call is not
scheduled on the event calendar.

Gate (opening
or closing)

Gate Yes

Memory read MemoryRead Maybe Select Resolve simultaneous
signal updates according to event
priority on the Read tab of the
Signal Latch block’s dialog box.

Memory write MemoryWrite Maybe Select Resolve simultaneous
signal updates according to event
priority on the Write tab of the
Signal Latch block’s dialog box.

New head of
queue

NewHeadOfQueue Yes

Port selection PortSelection Yes

Preemption No

14-11



14 Learning More About SimEvents® Software

Event Name Event Type in
Debugger

Scheduled
On Event
Calendar

How to Schedule Event on Event
Calendar

Release Release Yes

Sample time
hit

No

Service
completion

ServiceCompletion Yes

Storage
completion

StorageCompletion Yes

Subsystem Subsystem Maybe Select Resolve simultaneous
signal updates according to event
priority in the dialog box of the
Event Filter block that receives the
signal that causes the subsystem
execution.

Timeout Timeout Yes

Trigger No

Value change No

When you use blocks that offer a Resolve simultaneous signal updates
according to event priority option, your choice determines whether, or
with what priority, particular events are scheduled on the event calendar. For
information about this option, see “Resolution Sequence for Input Signals” on
page 14-15 and “Choosing How to Resolve Simultaneous Signal Updates” on
page 14-14.

For Further Information

• Chapter 3, “Managing Simultaneous Events” — Resolving race conditions
in discrete-event simulations

• “Viewing the Event Calendar” on page 13-46 — Displaying event
information in the MATLAB Command Window using the SimEvents
debugger

14-12



Event Sequencing

• “Resolution Sequence for Input Signals” on page 14-15 — How the
application resolves updates in input signals

14-13



14 Learning More About SimEvents® Software

Choosing How to Resolve Simultaneous Signal Updates
The Resolve simultaneous signal updates according to event priority
option lets you defer certain operations until the application determines
which other operations are supposed to be simultaneous. To use this
option appropriately, you should understand your modeling goals, your
model’s design, and the way the application processes signal updates
that are simultaneous with other operations in the simulation. The table
indicates sources of relevant information that can help you use the Resolve
simultaneous signal updates according to event priority option.

To Read
About...

Refer to... Description

Background “Detection of Signal Updates” on page
14-15 and “Effect of Simultaneous
Operations” on page 14-16

What simultaneous signal updates
are, and the context in which the
option is relevant

“Specifying Event Priorities to
Resolve Simultaneous Signal
Updates” on page 14-17

How the simulation behaves when
you select the option

Behavior

“Resolving Simultaneous Signal
Updates Without Specifying Event
Priorities” on page 14-19

How the simulation behaves when
you do not select the option

“Example: Effects of Specifying
Event Priorities” on page 3-26

Illustrates the significance of the
option

Examples

“Example: Choices of Values for
Event Priorities” on page 3-11

Examines the role of event priority
values, assuming you have selected
the option

Tips “Choosing an Approach for
Simultaneous Events” on page
3-7

Tips to help you decide how to
configure your model

For more general information about simultaneous events, information in
“Overview of Simultaneous Events” on page 3-2 is also relevant.

14-14



Resolution Sequence for Input Signals

Resolution Sequence for Input Signals

In this section...

“Detection of Signal Updates” on page 14-15

“Effect of Simultaneous Operations” on page 14-16

“Resolving the Set of Operations” on page 14-17

“Specifying Event Priorities to Resolve Simultaneous Signal Updates” on
page 14-17

“Resolving Simultaneous Signal Updates Without Specifying Event
Priorities” on page 14-19

“For Further Information” on page 14-22

Detection of Signal Updates
A block that possesses a reactive port listens for relevant updates in the input
signal. A relevant update causes the block to react appropriately (for example,
by opening a gate or generating a function call).

Example of Signal Updates and Reactions

The schematics below illustrate relevant updates and the blocks’
corresponding reactions.

Signal Update That Causes a Switch to Select a Port

14-15



14 Learning More About SimEvents® Software

Signal Update That Causes a Gate to Open

Effect of Simultaneous Operations
An update in an input signal is often simultaneous with other operations in
the same block or in other blocks in the model. The processing sequence for
the set of simultaneous operations can influence the simulation behavior.

Example of Simultaneous Signal Updates

In the model below, two signal updates and one entity-generation event
occur simultaneously and independently. The simulation behaves differently
depending on the sequence in which it processes these events and their logical
consequences (where the port selection event is a logical consequence of the
update of the p signal and the gate opening is a logical consequence of the
update of the en signal). Advancement of the newly generated entity is also a
potential simultaneous event, but it can occur only if conditions in the switch,
queue, and gate blocks permit the entity to advance.

14-16



Resolution Sequence for Input Signals

Resolving the Set of Operations
For modeling flexibility, blocks that have reactive ports offer two levels of
choices that you can make to refine the simulation’s behavior:

• The Resolve simultaneous signal updates according to event
priority check box lets you choose the algorithm the application uses to
resolve the reactions to signal updates, relative to other simultaneous
operations in the simulation.

• If you select Resolve simultaneous signal updates according to event
priority, the algorithm relies on the relative values of a set of numerical
event priorities. You must set the event priority values using parameters
in various blocks in the model.

Specifying Event Priorities to Resolve Simultaneous
Signal Updates
If you select the Resolve simultaneous signal updates according to
event priority option in a block that has a reactive port, and if the block
detects a relevant update in the input signal that connects to the reactive
port, then the application defers reacting to the update until it can determine
which other operations are supposed to be simultaneous. Furthermore, the
application sequences the reaction to the update using the numerical event
priority that you specify.

14-17



14 Learning More About SimEvents® Software

Schematic Showing Application Processing
The next figure summarizes the steps the application takes when you select
Resolve simultaneous signal updates according to event priority and
the block has a relevant update in its input signal at a given time, T.

������
�������� !
	
���	������������
���	��!����������"
	���#��������������

���������
��	��
���	�����������

���	
�	�������"

�����

������


�����
�����������
�	
���	�����������"

�����

������� 

�����

�
���������
�����

�
���������

�����

�
���������
�����

�
���������

$$$
$$$

�������������
����	����
�������

���
	�����	�������"
%��������	
���	�&

Processing for Numerical-Priority Events

Contrast this with the schematics in Processing for System-Priority Events on
page 14-20 and Processing for Immediate Updates on page 14-21.

Use of the Event Calendar
To defer reacting to a signal update, the block schedules an event (“Event X”
in the schematic) on the event calendar to process the block’s reaction. The
scheduled time of the event is the current simulation time, except that the
Signal-Based Function-Call Generator block lets you specify a time delay.
The event priority of the event is the value of the Event priority or similarly
named parameter in the block dialog box.

After scheduling the event, the application might perform other operations in
the model at the current simulation time that are not scheduled on the event

14-18



Resolution Sequence for Input Signals

calendar. Examples of other operations can include updating other signals
or processing the arrival or departure of entities.

Use of Event Priority Values
When the application begins processing the events that are scheduled on
the event calendar for the current simulation time, event priority values
influence the processing sequence. For details, see “Processing Sequence for
Simultaneous Events” on page 14-9. As a result, the application is resolving
the update or change in the input signal (which might be simultaneous with
other operations in the same block or in other blocks) according to the relative
values of event priorities of all simultaneous events on the event calendar. A
particular value of event priority is not significant in isolation; what matters
is the ordering in a set of event priorities for a set of simultaneous events.

Resolving Simultaneous Signal Updates Without
Specifying Event Priorities
If you do not select the Resolve simultaneous signal updates according
to event priority option in a block that has a reactive port, and if the block
detects a relevant update in the input signal that connects to the reactive
port, then the block processes its reaction using one of these approaches:

• Defers reacting to the update until it can determine which other operations
are supposed to be simultaneous. Furthermore, the application sequences
the reaction to the update using an event priority value called a system
priority, denoted SYS1 or SYS2.

For details, see “System-Priority Events on the Event Calendar” on page
14-20.

• Reacts upon detecting the update (shown as “immediately” in the schematic
illustrating this approach). The reaction, such as generation of a function
call in the Signal-Based Function-Call Event Generator block, is not
deferred, is not scheduled on the event calendar, and has no event priority.
As a result, you are not resolving the sequence explicitly.

For details, see “Unprioritized Reactions to Signal Updates” on page 14-21.

14-19



14 Learning More About SimEvents® Software

System-Priority Events on the Event Calendar
The next figure summarizes the steps the application takes when you choose
not to select Resolve simultaneous signal updates according to event
priority in a block that uses system-priority events and that has a relevant
update in its input signal at a given time, T.

������
�������� !
	
���	������������
���	��!����������"�	��
#����
�
������������

���������
��	��
���	�����������

���	
�	�������"

�����

������


�����
�����������
�	
���	�����������"

�����

������� 

�����

�
���������
�����

�
���������

�����

�
���������
�����

�
���������

$$$
$$$

�������������
����	����
�������

���
	�����	�������"
%��������	
���	�&

Processing for System-Priority Events

Contrast this with the schematics in Processing for Numerical-Priority Events
on page 14-18 and Processing for Immediate Updates on page 14-21. The
difference between using a system priority and specifying a numerical priority
for the same event is that the system priority causes earlier processing; see
“Processing Sequence for Simultaneous Events” on page 14-9.

The blocks that can use system-priority events, unlike the blocks that can
perform immediate updates, are characterized by the ability to directly
change the state of an entity, including its location or attribute:

• Enabled Gate

• Entity Departure Counter

14-20



Resolution Sequence for Input Signals

• Event-Based Entity Generator

• Input Switch

• Output Switch

• Path Combiner

• Release Gate

Unprioritized Reactions to Signal Updates
The next figure summarizes the steps the application takes when you do
not select Resolve simultaneous signal updates according to event
priority in a block that performs immediate updates and that has a relevant
update in its input signal at a given time, T.

�����

���	�����
����������	��
������	��
�

���������
��	��
���	�����������

���	
�	�������"

�������������
����	����
�������

���
	�����	�������"
%��������	
���	�&

�����

������


�����
�����������
�	
���	�����������"

�����

�
���������
�����

�
���������

�����

�
���������
�����

�
���������

$$$

Processing for Immediate Updates

Contrast this with the schematics in Processing for Numerical-Priority Events
on page 14-18 and Processing for System-Priority Events on page 14-20.

14-21



14 Learning More About SimEvents® Software

The blocks that can perform immediate updates, unlike the blocks that can
use system-priority events, are characterized by the ability to produce signal
outputs as a direct result of signal-based events:

• Discrete Event Inport

• Signal Latch

• Signal-Based Function-Call Event Generator

• Signal-Based Function-Call Generator

For Further Information

• Chapter 3, “Managing Simultaneous Events” — Resolving race conditions
in discrete-event simulations

• “Reactive Ports” on page 14-34 — What constitutes a relevant update at a
reactive port

14-22



Livelock Prevention

Livelock Prevention

In this section...

“Overview” on page 14-23

“Permitting Large Finite Numbers of Simultaneous Events” on page 14-24

Overview
SimEvents software includes features to prevent livelock. Livelock is a
situation in which a block returns to the same state infinitely often at the
same time instant. Typical cases include:

• An entity that moves along a looped entity path with no passage of time
and no logic to stop the entity for a nonzero period of time

• An intergeneration time of 0 in an entity generator

• A Signal-Based Function-Call Generator block that calls itself with a time
delay of 0

• A signal feedback loop in which event-based signals execute blocks in the
loop repeatedly

The model below shows an example of livelock. The livelock prevention
feature causes the simulation to halt with an error message. Without this
error detection, an entity would move endlessly around the looped entity path
without the simulation clock advancing.

14-23



14 Learning More About SimEvents® Software

Permitting Large Finite Numbers of Simultaneous
Events
If your simulation creates a large, but not infinite, number of simultaneous
events, consider increasing the model’s thresholds related to livelock
prevention.

For example, if you modify the Preload Queue with Entities demo by setting
both the capacity of the queue and the number of iterations of the function-call
generator to 2000, then the simulation creates 2000 simultaneous events with
no infinite loops. To prevent a spurious error in this situation, increase the
model’s limit on the number of events per block to at least 2000.

To change the thresholds related to livelock prevention, use this procedure:

1 Open the Configuration Parameters dialog box by selecting
Simulation > Configuration Parameters from the model window’s
menu bar.

2 Navigate to the SimEvents pane of the Configuration Parameters dialog
box.

3 Change the values of the Maximum events per block and Maximum
events per model parameters.

4 Apply the change by clicking OK or Apply.

14-24



Signal-Based Event Cycle Prevention

Signal-Based Event Cycle Prevention
This example shows how to eliminate an event-based signal cycle using the
following resolution techniques. A signal-based event cycle is a loop formed by
blocks that unconditionally update their outputs in response to a signal-based
event. Such a cycle can cause an infinite loop during a simulation.

Error Caused by Signal-Based Event Cycle

Simulating the following model causes an error because of a signal-based
event cycle. If the simulation proceeds, a sample time hit of the #d signal
causes the following actions to repeat in an infinite loop:

• The Add block executes because of a sample time hit of one of its input
signals.

• The Gain, Bias, Signal Scope, and Gain1 blocks execute.

Resolution Using Atomic Subsystem and Unit Delay Blocks

The following model performs the computation in an Atomic Subsystem block,
and includes a Unit Delay block on a signal line that connects to an input port
of the Add block. During the simulation, a sample time hit of the #d signal
causes the subsystem to execute. The subsystem executes each block inside
the subsystem exactly once. The output of the Unit Delay block is the same as
the output of the Gain1 block from the previous invocation of the subsystem.

14-25



14 Learning More About SimEvents® Software

Alternative Resolution Using Signal Latch Block

The following model includes a Signal Latch block on a signal line that
connects to the Add block. As a result, a sample time hit of the #d signal
causes the following actions to occur once:

• The Add block executes because of a sample time hit of its first input signal.

14-26



Signal-Based Event Cycle Prevention

• The Gain, Bias, Signal Scope, and Gain1 blocks execute.

• The sample time hit at the rts port of the Signal Latch block causes an
update in the out output signal. The value of this signal is the same as
the output of the Gain1 block from the previous time this entire sequence
of actions occurred.

• The Add block executes again because of a sample time hit of its second
input signal.

• The Gain, Bias, Signal Scope, and Gain1 blocks execute again.

• The two sample time hits at the wts port of the Signal Latch block cause
the block to write the value of the in input signal to the block memory. This
operation does not cause the block to update the out output signal.

14-27



14 Learning More About SimEvents® Software

14-28



Notifications and Queries Among Blocks

Notifications and Queries Among Blocks

In this section...

“Overview of Notifications and Queries” on page 14-29

“Querying Whether a Subsequent Block Can Accept an Entity” on page
14-29

“Notifying Blocks About Status Changes” on page 14-30

Overview of Notifications and Queries
In a variety of situations, a SimEvents block notifies other blocks about
changes in its status or queries other blocks about their status. These
interactions among blocks occur automatically and are essential to the
proper functioning of a discrete-event simulation. Entity request events are
one kind of interaction among blocks. Entity request events appear on the
event calendar, but other kinds of notifications and queries are not explicitly
reported.

Querying Whether a Subsequent Block Can Accept
an Entity
Before a SimEvents block outputs an entity, it queries the next block to
determine whether that block can accept the entity. For example,

• When an entity arrives at an empty FIFO Queue block, the queue queries
the next block. If that block can accept an entity, the queue outputs the
entity at the head of the queue; otherwise, the queue holds the entity.

• While a Single Server block is busy serving, it does not query the next
block. Upon completion of the service time, the server queries the next
block. If that block can accept an entity, the server outputs the entity that
has completed its service; otherwise, the server holds the entity.

• When an entity attempts to arrive at a Replicate block, the block queries
each of the blocks connected to its entity output ports. If all of them can
accept an entity, then the Replicate block copies its arriving entity and
outputs the copies; otherwise, the block does not permit the entity to arrive
there and the entity must stay in a preceding block.

14-29



14 Learning More About SimEvents® Software

• After a Time-Based Entity Generator block generates a new entity, it
queries the next block. If that block can accept an entity, then the generator
outputs the new entity; otherwise, the behavior of the Time-Based Entity
Generator block depends on the value of its Response when blocked
parameter.

• When a block (for example, a Single Server block) attempts to advance an
entity to the Input Switch block, the server uses a query to check whether it
is connected to the currently selected entity input port of the Input Switch
block. If so, the Input Switch queries the next block to determine whether
it can accept the entity because the Input Switch block cannot hold an
entity for a nonzero duration.

• When an entity attempts to arrive at an Output Switch block, the block
must determine which entity output port is selected for departure and
whether the block connected to that port can accept the entity. If the
Switching criterion parameter is set to First port that is not
blocked, then the Output Switch block might need to query more than
one subsequent block to determine whether it can accept the entity. If
the Switching criterion parameter of the Output Switch block is set to
From attribute, then the block also requires information about the entity
that is attempting to arrive.

Notifying Blocks About Status Changes
When a SimEvents block undergoes certain kinds of status changes, it notifies
other blocks of the change. This notification might cause the other blocks to
change their behavior or status in some way, depending on the circumstances.
For example,

• After an entity departs from a Single Server block, it schedules an entity
request event to notify the preceding block that the server’s entity input
port has changed from unavailable to available.

• After an entity departs from a queue that was full to capacity, the queue
schedules an entity request event to notify the preceding block that the
queue’s entity input port has changed from unavailable to available.

• After an entity departs from a switch or Enabled Gate block, it schedules
an entity request event to determine whether another entity can advance
from a preceding block. This process repeats until no further entity
advancement can occur.

14-30



Notifications and Queries Among Blocks

• When a Path Combiner block receives notification that the next block’s
entity input port has changed from unavailable to available, the Path
Combiner block’s entity input ports also become available. The block
schedules an entity request event to notify preceding blocks that its entity
input ports are available.

This case is subtle because the Path Combiner block usually has more than
one block to notify, and the sequence of notifications can be significant. See
the block’s reference page for more information about the options.

• When an entity arrives at a Single Server block that has a t signal input
port representing the service time, that port notifies the preceding block
of the need for a new service time value. If the preceding block is the
Event-Based Random Number block, then it responds by generating a new
random number that becomes the service time for the arriving entity.

This behavior occurs because the t signal input port is a notifying port; see
“Notifying, Monitoring, and Reactive Ports” on page 14-32 for details.

14-31



14 Learning More About SimEvents® Software

Notifying, Monitoring, and Reactive Ports

In this section...

“Overview of Signal Input Ports of SimEvents Blocks” on page 14-32

“Notifying Ports” on page 14-32

“Monitoring Ports” on page 14-33

“Reactive Ports” on page 14-34

Overview of Signal Input Ports of SimEvents Blocks
Signal input ports of SimEvents blocks fall into these categories:

• Notifying ports, which notify the preceding block when a certain event
has occurred

• Monitoring ports, which help you observe signal values

• Reactive ports, which listen for updates or changes in the input signal and
cause an appropriate reaction in the block possessing the port

The distinctions are relevant when you use the Event-Based Random Number
or Event-Based Sequence block. For details, see these topics:

• Event-Based Random Number reference page

• Event-Based Sequence reference page

• “Generating Random Signals” on page 4-4

• “Using Data Sets to Create Event-Based Signals” on page 4-7

Notifying Ports
Notifying ports, listed in the table below, notify the preceding block when a
certain event has occurred. When the preceding block is the Event-Based
Random Number or Event-Based Sequence block, it responds to the
notification by generating a new output value. Other blocks ignore the
notification.

14-32



Notifying, Monitoring, and Reactive Ports

List of Notifying Ports

Signal Input Port Block Generate New Output Value Upon

A1, A2, A3, etc. Set Attribute Entity arrival

in Signal Latch Write event

Entity Departure
Function-Call
Generator

Entity arrivale1, e2

Signal-Based
Function-Call
Generator

Relevant signal-based event, depending on
configuration of block

t Signal-Based
Function-Call
Generator

Relevant signal-based event, depending on
configuration of block

Infinite Server Entity arrival

N-Server Entity arrival

t

Single Server Entity arrival

t Time-Based Entity
Generator

Simulation start and subsequent entity
departures

ti Schedule Timeout Entity arrival

x X-Y Signal Scope Sample time hit at in signal input port

Monitoring Ports
Monitoring ports, listed in the table below, help you observe signal values.
Optionally, you can use a branch line to connect the Event-Based Random
Number or Event-Based Sequence block to one or more monitoring ports.
These connections do not cause the block to generate a new output, but merely
enable you to observe the signal.

14-33



14 Learning More About SimEvents® Software

List of Monitoring Ports

Signal Input Port Block

Unlabeled Discrete Event Signal to Workspace

Signal Scopein

X-Y Signal Scope

ts, tr, vc Instantaneous Event Counting Scope

Unlabeled Event to Timed Signal

Reactive Ports
Reactive ports, listed in the table below, listen for relevant updates in the
input signal and cause an appropriate reaction in the block possessing the
port. For example, the p port on a switch listens for changes in the input
signal; the block reacts by selecting a new switch port.

List of Reactive Ports

Signal Input Port Block Relevant Update

en Enabled Gate Value change from nonpositive to positive, and
vice versa

Input Switch

Output Switch

p

Path Combiner

Value change

14-34



Notifying, Monitoring, and Reactive Ports

List of Reactive Ports (Continued)

Signal Input Port Block Relevant Update

Entity Departure
Counter

Event-Based Entity
Generator

Release Gate

Signal-Based
Function-Call
Generator

ts, tr, vc

Signal-Based
Function-Call Event
Generator

Sample time hit at ts port
Appropriate trigger at tr port
Appropriate value change at vc port

wts, wtr, wvc, rts,
rtr, rvc

Signal Latch
Sample time hit at wts or rts port
Appropriate trigger at wtr or rtr port
Appropriate value change at wvc or rvc port

Unlabeled input port Event Filter Depends on block parameter values. Choices
are:

Sample time hit
Appropriate trigger
Appropriate value change

Unlabeled input port Initial Value Sample time hit

For triggers and value changes, “appropriate” refers to the direction you
specify in a Type of change in signal value or Trigger type parameter in
the block’s dialog box.

14-35



14 Learning More About SimEvents® Software

Interleaving of Block Operations

In this section...

“Overview of Interleaving of Block Operations” on page 14-36

“How Interleaving of Block Operations Occurs” on page 14-36

“Example: Sequence of Departures and Statistical Updates” on page 14-37

Overview of Interleaving of Block Operations
During the simulation of a SimEvents model, some sequences of block
operations become interleaved when the application processes them.
Interleaving can affect the simulation behavior. This section describes and
illustrates interleaved block operations to help you understand the processing
and make appropriate modeling choices.

How Interleaving of Block Operations Occurs
At all simulation times from an entity’s generation to destruction, the entity
resides in a block (or more than one block, if the entity advances from block
to block at a given time instant). Blocks capable of holding an entity for a
nonzero duration are called storage blocks. Blocks that permit an entity
arrival but must output the entity at the same value of the simulation clock
are called nonstorage blocks. During a simulation, whenever an entity
departs from a block, the application processes enough queries, departures,
arrivals, and other block operations until either a subsequent storage block
detects the entity’s arrival or the entity is destroyed. Some block operations,
including the updates of statistical output signals that are intended to be
updated after the entity’s departure, are deferred until after a subsequent
storage block detects the entity’s arrival or the entity is destroyed.

To change the sequence of block operations, you might need to insert storage
blocks in key locations along entity paths in your model, as illustrated in
“Example: Sequence of Departures and Statistical Updates” on page 14-37.
A typical storage block to insert for this purpose is a server whose service
time is 0.

14-36



Interleaving of Block Operations

Example: Sequence of Departures and Statistical
Updates
Consider the sequence of operations in the Time-Based Entity Generator, Set
Attribute, and Attribute Scope blocks shown below.

At each time T = 1, 2, 3,..., 10, the application processes the following
operations in the order listed:

Order Operation Block

1 Entity generation Time-Based Entity Generator

2 Entity advancement to nonstorage
block

From Time-Based Entity
Generator to Set Attribute

3 Assignment of attribute using
value at A1 signal input port

Set Attribute

4 Entity advancement to nonstorage
block

From Set Attribute to
Attribute Scope

5 Entity destruction Attribute Scope

6 Update of plot Attribute Scope

7 Update of signal at #d signal
output port

Time-Based Entity Generator

The final operation of the Time-Based Entity Generator block is deliberately
processed after operations of subsequent blocks in the entity path are
processed. This explains why the plot shows a value of 0, not 1, at T=1.

14-37



14 Learning More About SimEvents® Software

Altering the Processing Sequence
If you want to be sure that the Set Attribute block reads the value at the A1
signal input port after the Time-Based Entity Generator block has updated
its #d output signal, then insert a storage block between the two blocks. In
this simple model , you can use a Single Server block with a Service time
parameter of 0. The model, table, and plot are below.

Order Operation Block

1 Entity generation Time-Based Entity Generator

2 Entity advancement to storage
block

From Time-Based Entity
Generator to Single Server

3 Update of signal at #d signal
output port

Time-Based Entity Generator

4 Service completion Single Server

5 Entity advancement to nonstorage
block

From Single Server to Set
Attribute

14-38



Interleaving of Block Operations

Order Operation Block

6 Assignment of attribute using
value at A1 signal input port

Set Attribute

9 Entity advancement to nonstorage
block

From Set Attribute to
Attribute Scope

10 Entity destruction Attribute Scope

11 Update of plot Attribute Scope

Consequences of Inserting a Storage Block
If the storage block you have inserted to alter the processing sequence holds
the entity longer than you expect (beyond the zero-duration service time, for
example), be aware that your simulation might change in other ways. You
should consider the impact of either inserting or not inserting the storage
block.

For example, suppose you add a gate block to the preceding example and view
the average intergeneration time, w, of the entity generator block. When the
gate is closed, a newly generated entity cannot advance immediately to the
scope block. Whether this entity stays in the entity generator or a subsequent
server block affects the w signal, as shown in the figures below.

14-39



14 Learning More About SimEvents® Software

Model with Gate and Without Storage Block

When a storage block is present, the first pending entity stays there instead
of in the entity generator. The earlier departure of the first entity from the
entity generator increases the value of the w signal.

14-40



Interleaving of Block Operations

Model with Gate and Storage Block

14-41



14 Learning More About SimEvents® Software

Update Sequence for Output Signals

In this section...

“Determining the Update Sequence” on page 14-42

“Example: Detecting Changes in the Last-Updated Signal” on page 14-43

Determining the Update Sequence
When a block produces more than one output signal in response to events,
the simulation behavior might depend on the sequence of signal updates
relative to each other. This is especially likely if you use one of the signals to
influence a behavior or computation that also depends on another one of the
signals, as in “Example: Detecting Changes in the Last-Updated Signal” on
page 14-43 and .

When you turn on more than one output signal from a SimEvents block’s
dialog box (typically, from the Statistics tab), the block updates each of
the signals in a sequence. See the Signal Output Ports table on the block’s
reference page to learn about the update order:

• In some cases, a block’s reference page specifies the sequence explicitly
using unique numbers in the Order of Update column.

For example, the reference page for the N-Server block indicates that upon
entity departures, the w signal is updated before the #n signal. The Order
of Update column in the Signal Output Ports table lists different numbers
for the w and #n signals.

• In some cases, a block’s reference page lists two or more signals without
specifying their sequence relative to each other. Such signals are updated
in an arbitrary sequence relative to each other and you should not rely on
a specific sequence for your simulation results.

For example, the reference page for the N-Server block indicates that the
w and util signals are updated in an arbitrary sequence relative to each
other. The Order of Update column in the Signal Output Ports table lists
the same number for both the w and util signals.

• When a block offers fewer than two signal output ports, the sequence
of updates does not need explanation on the block’s reference page. For

14-42



Update Sequence for Output Signals

example, the reference page for the Enabled Gate block does not indicate
an update sequence because the block can output only one signal.

Example: Detecting Changes in the Last-Updated
Signal
The example below plots the ratio of the queue’s current length to the time
average of the queue length. The FIFO Queue block produces #n and len
signals representing the current and average lengths, respectively. The
computation of the ratio occurs in a function-call subsystem that is called
when the Signal-Based Function-Call Generator block detects a change in #n
(as long as len is positive, to avoid division-by-zero warnings). Because the
FIFO Queue block updates the len signal before updating the #n signal, both
signals are up to date when the value change occurs in the #n signal.

Top-Level Model

14-43



14 Learning More About SimEvents® Software

Subsystem Contents

If you instead connect the len signal to the Signal-Based Function-Call
Generator block’s vc input port, then the block issues a function call upon
detecting a change in the len signal. At that point, the #n value is left
over from the block’s previous arrival or departure, so the computed ratio
is incorrect.

14-44



SimEvents® Support for Simulink® Subsystems

SimEvents Support for Simulink Subsystems

In this section...

“Variant Subsystems” on page 14-45

“Virtual and Nonvirtual Subsystems” on page 14-45

Variant Subsystems
If a Variant Subsystem is in a discrete-event system, the Variant Subsystem
cannot contain:

• SimEvents blocks.

• Simulink blocks that the SimEvents software does not support. See “Blocks
That Support Event-Based Input Signals” on page 14-48 for a list of these
blocks.

Virtual and Nonvirtual Subsystems
A SimEvents block cannot simulate in a nonvirtual subsystem.

14-45



14 Learning More About SimEvents® Software

Storage and Nonstorage Blocks

In this section...

“Storage Blocks” on page 14-46

“Nonstorage Blocks” on page 14-46

For the significance of the distinction between storage and nonstorage blocks,
see “Interleaving of Block Operations” on page 14-36.

Storage Blocks
These blocks are capable of holding an entity for a nonzero duration:

• Blocks in Queues library

• Blocks in Servers library

• Blocks in Entity Generators library

• Output Switch block with the Store entity before switching option
selected

Nonstorage Blocks
These blocks permit an entity arrival but must output or destroy the entity at
the same value of the simulation clock:

• Blocks in Attributes library

• Blocks in Routing library, except the Output Switch block with the Store
entity before switching option selected

• Blocks in Gates library

• Blocks in the Entity Management library

• Blocks in Timing library

• Blocks in Probes library

• Blocks in SimEvents User-Defined Functions library

• Attribute Scope, X-Y Attribute Scope, and Instantaneous Entity Counting
Scope blocks

14-46



Storage and Nonstorage Blocks

• Entity Sink block

• Conn block

• Entity Departure Function-Call Generator block

• Entity-Based Function-Call Event Generator block

14-47



14 Learning More About SimEvents® Software

Blocks That Support Event-Based Input Signals

In this section...

“Computational Blocks” on page 14-48

“Sink Blocks” on page 14-49

“SimEvents Blocks” on page 14-50

“Other Blocks” on page 14-50

Computational Blocks
The following table lists blocks in the Simulink and Stateflow libraries
that can operate directly on event-based input signals. If the block has an
event-based input signal and a Sample time parameter in the block dialog
box, you must set Sample time to -1 to indicate an inherited sample time.

Tip If the block of interest is not in the table but has an inherited or constant
sample time, you can still use the block to perform a computation on an
event-based signal. Connect the event-based signal to an Atomic Subsystem
or Function-Call Subsystem block, and insert the computational block into
the subsystem.

Block Library

Add Math Operations

Atomic Subsystem Ports & Subsystems

Bias Math Operations

Bus Creator Signal Routing

Bus Selector Signal Routing

Chart Stateflow

Data Type Conversion Signal Attributes

Demux Signal Routing

Divide Math Operations

14-48



Blocks That Support Event-Based Input Signals

Block Library

Dot Product Math Operations

Function-Call Split Ports & Subsystems

MATLAB Function User-Defined Functions

From Signal Routing

Function-Call Subsystem Ports & Subsystems

Gain Math Operations

Goto Signal Routing

Goto Tag Visibility Signal Routing

Logical Operator Logic and Bit Operations

Math Function Math Operations

MinMax Math Operations

Mux Signal Routing

Product Math Operations

Product of Elements Math Operations

Reciprocal Sqrt Math Operations

Relational Operator Logic and Bit Operations

Sign Math Operations

Slider Gain Math Operations

Sqrt Math Operations

Subsystem Ports & Subsystems

Subtract Math Operations

Sum Math Operations

Unary Minus Math Operations

Sink Blocks
These blocks in the Simulink Sinks library can display, report on, or
terminate event-based input signals.

14-49



14 Learning More About SimEvents® Software

Block Library

Display Sinks

Floating Scope Sinks

Scope Sinks

Terminator Sinks

To Workspace Sinks

SimEvents Blocks
Except for the Timed to Event Signal and Timed to Event Function-Call
blocks, all blocks in the SimEvents libraries that have signal input ports
require the input signals to be event-based signals rather than time-based
signals.

Other Blocks
A block that is not in one of the SimEvents libraries, Simulink libraries, or
Stateflow library cannot directly operate on event-based signals. However,
if the block has an inherited or constant sample time, you can connect the
event-based signal to an Atomic Subsystem or Function-Call Subsystem block,
and then insert the block that is not in one of the libraries into the subsystem.

14-50



15

Migrating SimEvents
Models

• “Introduction” on page 15-2

• “Using seupdate” on page 15-4

• “After You Convert” on page 15-6

• “Model Behavior Changes” on page 15-7

• “Migration Limitations” on page 15-12



15 Migrating SimEvents® Models

Introduction

In this section...

“Using seupdate to Convert a SimEvents Model” on page 15-2

“Expected Changes to Model Contents” on page 15-3

If you have SimEvents models prior to SimEvents Version 4.0, upgrade your
models to take advantage of modeling syntax updates.

Using seupdate to Convert a SimEvents Model
Use seupdate to convert a SimEvents model from a previous release to the
current release. This command updates SimEvents and Simulink blocks. As
necessary, it might also add gateway blocks to indicate transitions between
event-based and time-based computational components of your model.

Before you start the conversion:

• Make a backup copy of the model and associated libraries.

If you do not know the list of associated libraries for your model, use the
seupdate function:

seupdate(`model_name')

This function evaluates your model. If you have associated libraries, it
displays a list of the associated libraries, including custom libraries, that
you must update to the current version of the software. If you do not
have associated libraries, you see a message that there are no associated
libraries. In either case, at the prompt, type n to cancel the update. You
can now make backup copies of the model and libraries.

• Create a new folder to contain the model that you want to convert and its
associated libraries.

• Copy and paste your model and associated libraries.

• Have write permission for the folder, model, and associated libraries into
the new folder.

15-2



Introduction

• Make sure that the model does not have compilation warnings or errors.
In R2011b, race condition detection settings are stricter. Set the detection
settings to the stricter settings. Ensure that the model that you want
to convert can be simulated without warning or error in the R2011b
environment.

• Update all scripts that the model uses to add, delete, or change blocks.

Expected Changes to Model Contents
In R2011b, SimEvents models cannot simultaneously contain blocks from
earlier releases and the current release. After you update your model,
you cannot use blocks from previously released SimEvents libraries in the
updated model.

The seupdate command:

• Runs slupdate to perform all upgrades that are related to Simulink in the
models. You do not need to separately perform slupdate on any of the
models that you update using seupdate.

• Replaces SimEvents and Simulink blocks with their R2011b counterparts.

• Replaces instances of the Discrete Event Subsystem block with the
Simulink Atomic Subsystem block.

Note seupdate might convert a Discrete Event Subsystem block to a
virtual subsystem that contains an Atomic Subsystem block and possibly
Event Filter or gateway blocks. In these cases, the name of the virtual
subsystem might still contain the string, Discrete Event Subsystem.
However, the underlying subsystem has been converted.

• Inserts new gateway blocks to delineate the boundaries between
event-based portions and time-based portions of the model.

15-3



15 Migrating SimEvents® Models

Using seupdate
1 Copy legacy SimEvents models to a new folder. The original legacy models
are your backup copy.

2 Add the new folder to the MATLAB path. Remove the folder containing the
original custom libraries from the MATLAB path.

3 Open the model. Enter:

blockreport = seupdate(bdroot)

This command displays output like the following:

SEUPDATE performs SLUPDATE on the model and all its associated libraries.

It will also upgrade the model and libraries to comply with SimEvents 4.0

or later.

(Click here to learn how SEUPDATE will change your model.)

Because SEUPDATE automatically saves the model and libraries,

ensure that you have write permission for them.

In addition, you should back up your model and libraries before

running SEUPDATE:

The model 'doc_dd1' is not associated with any libraries.

Do you want SEUPDATE to update model 'doc_dd1' and save the changes? ([y]/n)

For this case, there are no associated libraries. Before converting, just
copy the model to the new folder.

4 Evaluate the proposed changes, then type y and press Enter.

Note When you type y and press Enter, seupdate overwrites the model
and associated libraries. If you enter n, the seupdate operation is cancelled.
No changes are made to the model and associated libraries.

A list of updates is displayed:

The model 'doc_dd1' was updated.

15-4



Using seupdate

To learn more about how SEUPDATE changed your model and
libraries, click here.

blockreport =

The following blocks in 'doc_dd1' were updated:
doc_dd1
doc_dd1/Signal Scope
doc_dd1/Entity Sink
doc_dd1/FIFO Queue
doc_dd1/Single Server
doc_dd1/Time-Based Entity Generator

5 If you want to evaluate the updates after the conversion, examine the
contents of blockreport. blockreport contains output from the slupdate
command, upon which seupdate is based, including conversion updates
and failures.

To avoid seupdate prompting, use blockreport = seupdate(bdroot,0).
This syntax allows seupdate to perform the conversion without requiring
confirmation.

15-5



15 Migrating SimEvents® Models

After You Convert

Changes in Behavior of the Model
After running seupdate, you might notice changes in behavior of the model.
The primary areas where you might notice changes are:

• Signal computations that the SimEvents software performed in a
time-based manner might now be performed more accurately in an
event-based manner. This behavior change might now cause changes in
your model output.

• The SimEvents software now computes initial values of various signals in
the event-based portions of your model more robustly at time 0 of your
simulation. These initial values might differ from previous releases.

• Architectural changes that more clearly delineate time-based modeling
from event-based modeling also affect the event propagation from one block
to another at time 0.

• Changes in sorted order within signal computations might improve
accuracy in hybrid time-based and event-based models.

• Updated queue blocks have improved updating of their #n statistic signal
port.

• Gateway blocks convert bus signals to non-bus signals

To ensure that the converted model behavior continues as you want:

1 Run the model and evaluate the simulation results.

2 If you notice simulation result changes that you do not want, modify your
upgraded model to get the desired results.

15-6



Model Behavior Changes

Model Behavior Changes
For behavior and syntax changes, see “Version 4.0 (R2011b) SimEvents
Software”. Following is a more detailed listing of some possible behavior
changes. Where applicable, a workaround is included

Time-Based Execution in Previous Model
In past releases, signal computation blocks placed outside of a discrete-event
subsystem executed exclusively (contrary to expectation in most cases) in a
time-based manner, even when the signal was between two SimEvents blocks.
In the current release, several signal computation blocks are enabled for
event-based execution. Signal computations that in previous releases, were
inadvertently placed in time-based execution might now execute correctly in
an event-based manner. This change might lead to subtle changes in behavior
of the overall model.

You can use the special port notation to help clearly identify any signal
computations that occur in an event-based manner. Additionally, using
gateway blocks, the conversion places any computation blocks that do not
support event-based computation within time-based regions of the model. If
such computations actually belong within event-based computation, consider
placing them within atomic subsystems to ensure event-based execution. You
can then remove the corresponding gateway blocks.

Algebraic Loops
If the model has a time-driven section or block that is not contained in a
discrete-event subsystem, such as an IC block, seupdate inserts a gateway
before and after that section or block. When you simulate the model, you
might notice algebraic loop errors.

To remove algebraic loop errors do one of the following:

• Replace the time-driven block, such as the IC block, with its SimEvents
equivalent. For example, replace the IC block with the SimEvents Initial
Value block.

When you replace a time-driven block with a SimEvents block, remove
the gateway blocks.

15-7



15 Migrating SimEvents® Models

• Add a Simulink Memory or Delay block adjacent to the gateway block,
outside the discrete event system. However, this action might cause a delay
that you do not want. If so, use the third option.

• Remove the gateway blocks and move the remaining blocks into an atomic
subsystem.

Queue Blocks
The behavior of queue blocks has changed. In previous releases, the queue
blocks accepted entities. The queue blocks tried to send the entity first and did
not update the #n output until certain that the entity was not being forwarded
at the same time as the update. Now, the entity is stored momentarily and #n
is updated. If the entity is forwarded at the same time, the #n value drops
once again. As a result, you might notice changes in the value of #n output
multiple times at the same time instant. This updated value is correct.

The updated queue blocks capture that before the entity is forwarded, it is
placed on the queue. As a result of this change, you might notice that blocks
connected to the #n port might execute more frequently than in previous
releases. In addition, if these blocks have states, these states might be
different because of the increased executions.

Workaround
Use the Event Filter block to reduce the number of firings of blocks connected
to the #n port.

Initial Values
Initial value changes in the current release might cause changes in simulation
behavior. You might notice these differences in the following cases.

p Port Values
In previous releases, SimEvents models required that you inserted Stateflow
charts in discrete event subsystems. If you did not insert a Stateflow chart
in a discrete event subsystem, at time 0, that block had a hit with output at
time 0, causing the p port to be nonzero, If the chart p port was connected to
the input p port of an Output Switch block, the software did not emit an error

15-8



Model Behavior Changes

message because the chart p port was nonzero. You did not need to explicitly
specify a value for the p port of the Output Switch block.

Now, the SimEvents software requires you to specify a valid value for the p
port of the Output Switch block. When you migrate the model to the current
release, and you do not specify a valid value for the Output Switch p port, the
software assigns a default value of 0 to the p port. This default assignment
causes an error message.

Workaround. To restore the original block behavior, perform one of the
following:

• Set an initial value for the block whose port is connected to the p port of the
chart block, such as the Output Switch or Signal Latch block.

15-9



15 Migrating SimEvents® Models

• Between the chart block and the block whose port is connected to the p port
of the chart block, insert an Initial Value block. Configure it to output a
legitimate initial value, such as 1.

Changes in Triggering
The changes in initial value calculation might cause value change (vc) ports
and trigger (tr) ports to cause increased downstream execution at time 0. To
avoid such execution, use Initial Value blocks to specify initial conditions for
signals.

15-10



Model Behavior Changes

Gateway Blocks Convert Bus Signals to Non-Bus Signals
Gateway blocks convert bus signals to non-bus signals. If seupdate adds a
gateway block to connect to the output port of a block that produces a bus
signal, the gateway block converts the bus signal to a non-bus signal.

Workaround. If your model uses bus signals, in the Configuration
Parameters dialog box, consider setting the Diagnostics > Connectivity
Bus signal treated as vector parameter to error. If there is an issue when
you compile the model, you will see a cannot propagate bus signal error about
the gateway block. If you see this error:

1 Add a Bus Selector block to the output port of the block that generates a
bus signal.

2 For each signal output from the Bus Selector block, add a gateway block
and connect the signal.

3 Add a Bus Creator block and connect the output from each gateway block
to the input of the Bus Creator block.

4 Connect the output from the Bus Creator block to the input port of the
block that requires that bus signal.

5 Compile your model.

If you do not make this diagnostic setting, but upon model compilation,
receive an error from the block that requires the bus signal, perform the
workaround steps and recompile your model.

Multiple Hits at Time 0
In previous releases, the SimEvents software did not have hits at time 0.
Converted SimEvents model blocks might now have multiple hits at time 0.

This change in behavior is expected.

15-11



15 Migrating SimEvents® Models

Migration Limitations

Potential Misleading Output
During conversion, after seupdate replaces blocks, it tries to compile a model.
However, if the compilation occurs before the command has completed block
replacement or gateway block insertion, this compilation attempt might
display messages like the following:

blockreport = The following blocks in 'AircaftMaintenance01'

were updated:

AircraftMaintenance01/Scopes/From

AircraftMaintenance01/Scopes/From1

Simulink could not automatically update some blocks in

'AircraftMaintenance01'. YOu may be able to manually update them.

'AircraftMaintenance01' could not be compiled. Therefore, the

following blocks could not be checked:

AircraftMaintenance01/CalculateServiceTime/EmbeddedMATLAB Function/FailureType

Aircraft Maintenance01/Scopes/From1

In many cases, this report is a false negative. Verify that you can compile the
model successfully. If you cannot compile the model successfully, reevaluate
the model.

You might also see messages prompting you to run slupdate on your models.
You can ignore these messages because seupdate runs slupdate as part
of the update process.

15-12



A

Examples

Use this list to find examples in the documentation.



A Examples

Attributes of Entities
“Example: Setting Attributes” on page 1-8
“Example: Attaching Data Instead of Branching a Signal” on page 1-11

Counting Entities
“Example: Counting Simultaneous Departures from a Server” on page 1-21
“Example: Resetting a Counter After a Transient Period” on page 1-23

Queuing Systems
“Example: Event Calendar Usage for a Queue-Server Model” on page 2-7
“Example: LIFO Queue Waiting Time” on page 5-2
“Example: Serving Preferred Customers First” on page 5-7
“Example: Preemption by High-Priority Entities” on page 5-11
“Example: M/M/5 Queuing System” on page 5-17

Working with Events
“Example: Observing Service Completions” on page 2-19
“Example: Detecting Collisions by Comparing Events” on page 2-22
“Example: Opening a Gate Upon Random Events” on page 2-27
“Example: Counting Events from Multiple Sources” on page 2-32
“Example: Choices of Values for Event Priorities” on page 3-11
“Example: Effects of Specifying Event Priorities” on page 3-26

Working with Signals
“Example: Creating a Random Signal for Switching” on page 4-6
“Example: Resampling a Signal Based on Events” on page 4-15

A-2



Server States

“Example: Sending Queue Length to the Workspace” on page 4-17

Server States
“Example: Failure and Repair of a Server” on page 5-21
“Example: Adding a Warmup Phase” on page 5-23

Routing Entities
“Example: Cascaded Switches with Skewed Distribution” on page 6-6
“Example: Compound Switching Logic” on page 6-7
“Example: Choosing the Shortest Queue” on page 6-10

Gates
“Example: Controlling Joint Availability of Two Servers” on page 7-4
“Example: Synchronizing Service Start Times with the Clock” on page 7-6
“Example: Opening a Gate Upon Entity Departures” on page 7-7
“Example: First Entity as a Special Case” on page 7-11

Timeouts
“Basic Example Using Timeouts” on page 8-3
“Defining Entity Paths on Which Timeouts Apply” on page 8-7
“Example: Rerouting Timed-Out Entities to Expedite Handling” on page
8-11
“Example: Limiting the Time Until Service Completion” on page 8-13

A-3



A Examples

Troubleshooting
“Example: Plotting Entity Departures to Verify Timing” on page 10-13
“Example: Plotting Event Counts to Check for Simultaneity” on page 10-15
“Example: Incorrect Initial Value in Signal Loop” on page 13-82
“Example: Faulty Logic in Feedback Loop” on page 13-83
“Example: Deadlock Resulting from Loop in Entity Path” on page 13-85
“Example: Invalid Connection of Event-Based Random Number Generator”
on page 13-88
“Example: Sequence of Departures and Statistical Updates” on page 14-37

Statistics
“Example: Fraction of Dropped Messages” on page 11-8
“Example: Computing a Time Average of a Signal” on page 11-9
“Example: Resetting an Average Periodically” on page 11-12

Timers
“Basic Example Using Timer Blocks” on page 11-19
“Timing Multiple Entity Paths with One Timer” on page 11-21
“Timing Multiple Processes Independently” on page 11-22

A-4



Index

IndexA
arbitrary event sequence 3-9

troubleshooting 13-79
ARQ

Stateflow charts 12-4
attributes of entities

combining 1-25
MATLAB functions 1-12
permitted values 1-35
plots 10-2
reading values 1-18
setting values 1-6
subsystem for manipulating 1-15
usage 1-6

autoscaling 10-10
averaging signals

over samples 11-12
over time 11-9

axis limits 10-7

B
block breakpoints 13-57
block identifiers 13-19

obtaining 13-38
block-to-block interactions 14-29
breakpoint identifiers 13-19
breakpoints

clearing (removing) 13-64
disabling 13-64
discrete-event simulation 13-57
enabling 13-65
listing 13-61
running simulation until 13-63

C
caching 10-8
cancelation messages in debugger 13-13
cascading switch blocks

random 6-6
combining entities 1-25
combining events 2-31
conditional events 2-35
copying entities 1-33
counter reset events 2-2
counting entities

cumulative 1-20
instantaneous 1-20
reset 1-22
storing in attribute 1-24

counting events 10-2
simultaneity 10-15

D
data history 10-8
data types 4-3
debugger

discrete-event simulations 13-3
identifiers 13-19
indentation 13-21
sedb package 13-7
sedebug prompt 13-7
simulation log 13-8
starting SimEvents 13-5
startup commands 13-55
stepping in discrete-event simulation 13-27
stopping 13-25

debugging
discrete-event simulations 13-2

delayed restart events 2-2
delays

signal updates 13-92
dependent operations 13-21
detail settings 13-47
detection messages in debugger 13-15
discrete state plots 10-6
discrete-event plots 10-6

customizing 10-10

Index-1



Index

exporting 10-11
troubleshooting using 10-12

dropped messages 11-8

E
enabled gates 7-4
entities

combining 1-25
counting 1-20
event-based generation 1-2
replicating 1-33
synchronizing 1-26
timeouts 8-1

entity advancement events 2-2
entity collisions 2-22
entity data

combining 1-25
MATLAB functions 1-12
permitted values 1-35
plots 10-2
reading values 1-18
setting values 1-6
subsystem for manipulating 1-15
usage 1-6

entity destruction events 2-2
entity generation

event-based 1-2
vector of times 1-4

entity generation events 2-2
entity identifiers 13-19

obtaining 13-38
entity messages in debugger 13-16
entity paths

timeouts 8-7
entity request events 2-2
equal event priorities 3-9

troubleshooting 13-79
event breakpoints 13-57
event calendar 14-9

displaying 13-46
displaying in simulation log 13-10
events on 14-10
events on/off 3-26
example 2-7
numerical/system-level priority 3-26

event identifiers 13-19
obtaining 13-38

event-based sequences 4-7
event-based signals

data sets 4-7
deferring reactions 14-17
description 4-2
feedback loops 13-82
initial values 4-14
latency 13-80
manipulating 4-14
MATLAB® workspace 4-17
random 4-4
resampling 4-15
resolving updates 14-14
update sequence 14-42

events
conditionalizing 2-35
generating 2-25
manipulating 2-29
numerical/system-level priority 3-26
observing 2-15
on/off event calendar 3-26
priorities 3-8
reacting to signal updates 14-17
resolving signal updates 14-14
sequence 14-9

modeling approaches 3-7
simultaneous 3-2
supported types 2-2
translating 2-33
troubleshooting 13-78
union 2-31

execution messages in debugger 13-13

Index-2



Index

F
failure modeling

conditional events 2-36
gates 5-19
Stateflow 5-20

feedback entity paths
troubleshooting 13-85

feedback loops
troubleshooting 13-82

first-order-hold plots 10-6
function call events

discrete-event simulation 2-2
function calls 2-5

generating 2-25

G
gate events 2-2
gates 7-1

combinations 7-9
enabled 7-4
entity departures 7-7
release 7-6
role in modeling 7-2
types 7-3

H
head of queue events 2-2

I
identifiers in debugger 13-19

obtaining 13-38
indentation

simulation log 13-21
independent operations 13-21
independent replications 11-24
initial port selection

switching based on signal 6-2

initial seeds 11-24
initial values 4-14

feedback loops 13-82
input signals

deferring reactions to updates 14-17
resolving updates 14-14

inspecting states
blocks 13-36
current point 13-32
entities 13-34
events 13-38

instantaneous gate openings 7-6
intergeneration times

event generation 2-27
interleaved operations 14-36

L
latency

interleaved operations 14-36
signal updates 13-92
switching based on signal 6-2
troubleshooting 13-80

LIFO queues 5-2
livelock prevention 14-23
loops in entity paths 13-85

M
M/M/5 queuing systems 5-17
MATLAB functions

attributes of entities 1-12
maximum number of events 14-24
memory read events 2-2
memory write events 2-2
monitoring block messages in debugger 13-17
monitoring ports 14-33

N
n-servers 5-17

Index-3



Index

nonstorage blocks 14-46
notifying ports 14-32

O
Output Switch block

signal-based routing 6-2

P
plots 10-1

customizing 10-10
troubleshooting using 10-12
zero-duration values 4-21

point-to-point-delays 11-18
port selection events 2-2
ports

monitoring 14-33
notifying 14-32
reactive 14-34

preemption events 2-2
preemption in servers 5-10
priorities, entity

priority queues with preemptive servers 5-11
queue sequence 5-4
server preemption 5-10

priorities, event 3-8
reacting to signal updates 14-17
resolving signal updates 14-14
troubleshooting 13-79

Q
queues

choosing shortest using MATLAB code 6-10
LIFO vs. FIFO 5-2
preemptive servers 5-11
priority 5-4

queuing systems
M/M/5 5-17

R
race conditions 3-11
random

signals 4-4
random event sequence 3-9

troubleshooting 13-79
random numbers

event-based 4-4
switch selection 4-6

reactive ports 14-34
release events 2-2
release gates 7-6
reneging in queuing 8-3
replication of entities 1-33
replications 11-24
resampling signals 4-15
resetting averages 11-12
residual service time 5-11
resolving simultaneous updates of signals 14-14
resource allocation 1-25

S
sample means 11-12
sample time 4-2
sample time hit events 2-2
scatter plots 10-6
scheduling messages in debugger 13-13
scope blocks 10-1

zero-duration values 4-21
sedb package 13-7
sedebug prompt 13-7
seed of random number generator

varying results 11-24
server states 5-19
servers

failure states 5-19
multiple 5-17
preemption 5-10

service completion events 2-2

Index-4



Index

signal-based events
definition 2-4

signals
deferring reactions to updates 14-17
event-based 4-2
event-based data 4-7
random 4-4
resolving updates 14-14

simulation log 13-8
filtering 13-47
indentation 13-21

simultaneous events 3-2
event priorities 3-8
input signal updates 14-14
interleaved operations 14-36
modeling approaches 3-7
numerical/system-level priority 3-26
on/off event calendar 3-26
output signal updates 4-20
sequential processing 14-9
troubleshooting 13-78
unexpected 13-78

splitting entities 1-25
stack 5-2
stairstep plots 10-6
state inspection

blocks 13-36
current point 13-32
entities 13-34
events 13-38

Stateflow and SimEvents® 5-20
Stateflow® 12-3
statistics 11-2

accessing from blocks 11-5
custom 11-7
interleaved updates 14-36
latency 13-92

Statistics tab 11-5
stem plots 10-6
stepping in discrete-event simulation 13-27

stop time 11-30
storage blocks 14-46

changing processing sequence 14-38
looped entity paths 13-85

storage completion events 2-2
subsystem execution events 2-2
switching entity paths

based on signal 6-2
initial port selection 6-2
random with cascaded blocks 6-6
storing entity 6-2

synchronizing entities 7-6

T
time averages 11-9
timed breakpoints 13-57
timed-out entities 8-10

routing 8-11
timeout events 2-2
timeout intervals 8-4
timeout paths 8-7
timeout tags 8-4
timeouts of entities 8-1

role in modeling 8-2
timer tags 11-20
timers 11-18

combining 1-27
independent 11-22
multiple entity paths 11-21
restarting 11-22

trigger events
discrete-event simulation 2-2

V
value change events 2-2
visualization 10-1

zero-duration values 4-21

Index-5



Index

W
workspace 4-17

Z
zero-duration values

definition 4-20
MATLAB workspace 4-23
visualization 4-21

zero-order hold
plots 10-6

Index-6


	toc
	Working with Entities
	Generating Entities When Events Occur
	Overview
	Sample Use Cases for Event-Based Generation of Entities

	Specifying Generation Times for Entities
	Overview
	Procedure for Generating Entities at Specified Times

	Setting Attributes of Entities
	Role of Attributes in SimEvents Models
	Blocks That Set Attributes
	For Further Information

	Example: Setting Attributes
	Example: Attaching Data Instead of Branching a Signal

	Manipulating Attributes of Entities
	Choice of Approaches for Manipulating Attributes
	Writing Functions to Manipulate Attributes
	Procedure for Using the Attribute Function Block
	Example: Incorporating Legacy Code

	Using Block Diagrams to Manipulate Attributes

	Accessing Attributes of Entities
	Counting Entities
	Counting Departures Across the Simulation
	Counting Departures per Time Instant
	Example: Counting Simultaneous Departures from a Server

	Resetting a Counter Upon an Event
	Example: Resetting a Counter After a Transient Period

	Associating Each Entity with Its Index

	Combining Entities and Allocating Resources
	Overview of the Entity-Combining Operation
	For Further Information

	Example: Waiting to Combine Entities
	Example: Copying Timers When Combining Entities
	Example: Managing Data in Composite Entities
	Attribute Names Nonunique and Inaccessible in Composite Entity
	Attribute Names Unique and Accessible in Composite Entity


	Replicating Entities on Multiple Paths
	Sample Use Cases
	Modeling Notes

	Attribute Value Support
	Permitted Characteristics of Attribute Values
	Not Permitted as Attribute Values

	Working with Events
	Supported Events in SimEvents Models
	Types of Supported Events
	Signal-Based Events
	Function Calls

	Example: Event Calendar Usage for a Queue-Server Model
	Overview of Example
	Start of Simulation
	Generation of First Entity
	Generation of Second Entity
	Completion of Service Time
	Generation of Third Entity
	Generation of Fourth Entity
	Completion of Service Time

	Observing Events
	Techniques for Observing Events
	Example: Observing Service Completions
	Example Results
	Computation Details

	Example: Detecting Collisions by Comparing Events

	Generating Function-Call Events
	Role of Explicitly Generated Events
	Generating Events When Other Events Occur
	Example: Calling a Stateflow Block Upon Changes in Server Conten

	Generating Events Using Intergeneration Times
	Example: Opening a Gate Upon Random Events


	Manipulating Events
	Reasons to Manipulate Events
	Blocks for Manipulating Events
	Creating a Union of Multiple Events
	Example: Counting Events from Multiple Sources

	Translating Events to Control the Processing Sequence
	Example: Issuing Two Function Calls in Sequence
	Example: Generating a Function Call with an Event Priority

	Conditionalizing Events
	Example: Modeling Periodic Shutdown of an Entity Generator



	Managing Simultaneous Events
	Overview of Simultaneous Events
	Exploring Simultaneous Events
	Using Nearby Breakpoints to Focus on a Particular Time
	For Further Information

	Choosing an Approach for Simultaneous Events
	Assigning Event Priorities
	Procedure for Assigning Event Priorities
	Tips for Choosing Event Priority Values
	Procedure for Specifying Equal-Priority Behavior

	Example: Choices of Values for Event Priorities
	Overview of Example
	Arbitrary Resolution of Signal Updates
	Selecting a Port First
	Behavior at T=1
	Behavior at T=2
	Behavior at T=3
	Evidence from Plots and Signals

	Generating Entities First
	Behavior at T=1
	Behavior at T=2
	Plots and Signals

	Randomly Selecting a Sequence

	Example: Effects of Specifying Event Priorities
	Overview of the Example
	Default Behavior
	Simulation Behavior
	Deferring Gate Events
	Procedure
	Simulation Behavior


	Working with Signals
	Role of Event-Based Signals in SimEvents Models
	Overview of Event-Based Signals
	Comparison with Time-Based Signals
	Tips for Using Event-Based Signals
	Signal Restrictions for Event-Based Signals

	Generating Random Signals
	Generating Random Event-Based Signals
	Generating Random Signals Based on Arbitrary Events

	Examples of Random Event-Based Signals
	Example: Creating a Random Signal for Switching


	Using Data Sets to Create Event-Based Signals
	Behavior of the Event-Based Sequence Block
	Generating Sequences Based on Arbitrary Events
	Example


	Converting Between Time-Based and Event-Based Signals
	When to Convert Signals
	When Not to Convert Signals
	How to Convert Signals
	Gateway Blocks Convert Bus Signals to Non-Bus Signals 

	Manipulating Signals
	Specifying Initial Values of Event-Based Signals
	Example: Resampling a Signal Based on Events

	Sending Data to the MATLAB Workspace
	Behavior of the Discrete Event Signal to Workspace Block
	Example: Sending Queue Length to the Workspace

	Working with Multivalued Signals
	Zero-Duration Values of Signals
	Scenario: Server Departure and New Arrival
	Scenario: Queue Length

	Importance of Zero-Duration Values
	Detecting Zero-Duration Values
	Plotting Signals that Exhibit Zero-Duration Values
	Plotting the Number of Signal Changes Per Time Instant
	Viewing Zero-Duration Values in the MATLAB Workspace



	Modeling Queues and Servers
	Example: LIFO Queue Waiting Time
	Sorting by Priority
	Behavior of the Priority Queue Block
	Example: FIFO and LIFO as Special Cases of a Priority Queue
	Example: Serving Preferred Customers First
	Comparison with Unsorted Behavior


	Preempting an Entity in a Server
	Definition of Preemption
	Criteria for Preemption
	Residual Service Time
	Queuing Disciplines for Preemptive Servers
	Example: Preemption by High-Priority Entities
	Appearance of Preemption-Related Operations in Debugger


	Determining Whether a Queue Is Nonempty
	Modeling Multiple Servers
	Blocks that Model Multiple Servers
	Example: M/M/5 Queuing System

	Modeling the Failure of a Server
	Server States
	Using a Gate to Implement a Failure State
	Using Stateflow Charts to Implement a Failure State
	Example: Failure and Repair of a Server
	Example: Adding a Warmup Phase



	Routing Techniques
	Output Switching Based on a Signal
	Specifying an Initial Port Selection
	Using the Storage Option to Prevent Latency Problems
	Effect of Enabling Storage
	Effect of Disabling Storage


	Example: Cascaded Switches with Skewed Distribution
	Example: Compound Switching Logic
	Example: Choosing the Shortest Queue

	Regulating Arrivals Using Gates
	Role of Gates in SimEvents Models
	Overview of Gate Behavior
	Types of Gate Blocks

	Keeping a Gate Open Over a Time Interval
	Behavior of Enabled Gate Block
	Example: Controlling Joint Availability of Two Servers

	Opening a Gate Instantaneously
	Behavior of Release Gate Block
	Example: Synchronizing Service Start Times with the Clock
	Example: Opening a Gate Upon Entity Departures
	Alternative Using Value Change Events


	Adding Gating Logic Using Combinations of Gates
	Effect of Combining Gates
	Example: First Entity as a Special Case


	Forcing Departures Using Timeouts
	Role of Timeouts in SimEvents Models
	Basic Example Using Timeouts
	Basic Procedure for Using Timeouts
	Schematic Illustrating Procedure
	Step 1: Designate the Entity Path
	Step 2: Specify the Timeout Interval
	Step 3: Specify Destinations for Timed-Out Entities

	Defining Entity Paths on Which Timeouts Apply
	Linear Path for Timeouts
	Branched Path for Timeouts
	Feedback Path for Timeouts

	Handling Entities That Time Out
	Common Requirements for Handling Timed-Out Entities
	Techniques for Handling Timed-Out Entities
	Example: Rerouting Timed-Out Entities to Expedite Handling

	Example: Limiting the Time Until Service Completion

	Computations on Event-Based Signals
	Choice of Modeling Constructs for Computations
	Performing Computations in Atomic Subsystems
	When to Use Atomic Subsystems for Computations on Event-Based Si
	How to Set Up Atomic Subsystems for Computations
	Creating an Atomic Subsystem by Adding the Atomic Subsystem Bloc
	Creating an Atomic Subsystem from Existing Blocks

	Behavior of Computations in Atomic Subsystems
	Refining the Behavior
	Initial Value of the Subsystem Output
	Types of Events That Cause Subsystem Execution
	Subsystems Having Multiple Input Ports

	Examples That Use Atomic Subsystems

	Suppressing Computations By Filtering Out Events
	When to Suppress Computations
	States and Persistent Variables in Computation
	Repeated Execution of Computation
	Logic Corresponding to Changes or Triggers

	How to Set Up Event Filter Blocks
	Behavior of Event Filter Blocks
	Evaluating the Behavior
	Examples That Use Event Filter Blocks

	Performing Computations in Function-Call Subsystems
	When to Use Function-Call Subsystems for Computations on Event-B
	How to Set Up Function-Call Subsystems for Computations
	Behavior of Computations in Function-Call Subsystems
	Refining the Behavior
	Initial Value of the Subsystem Output
	Timing of Function Calls Versus Signal Updates
	Suppressing Computations Selectively

	Examples That Use Function-Call Subsystems

	Blocks Inside Subsystems with Event-Based Input Signals
	Performing Computations Without Using Subsystems
	When to Perform Computations on Event-Based Signals Without Usin
	How to Set Up Blocks for Computations
	Behavior of Computations
	Refining the Behavior
	Initial Value of Event-Based Signals
	Migrating from Direct Connections to Atomic Subsystem

	Examples That Perform Computations Without Using Subsystems

	Example: Computation With and Without Atomic Subsystem

	Plotting Data
	Choosing and Configuring Plotting Blocks
	Sources of Data for Plotting
	Comparison of Blocks for Plotting Signals Against Time
	Inserting and Connecting Scope Blocks
	Connections Among Points in Plots
	Varying Axis Limits Automatically
	Caching Data in Scopes
	Examples Using Scope Blocks

	Working with Scope Plots
	Customizing Plots
	Exporting Plots

	Using Plots for Troubleshooting
	Example: Plotting Entity Departures to Verify Timing
	Details about the model
	Example: Plotting Event Counts to Check for Simultaneity

	Using Statistics
	Statistics for Data Analysis
	Statistics for Run-Time Control
	Statistical Tools for Discrete-Event Simulation
	Accessing Statistics from SimEvents Blocks
	Deriving Custom Statistics
	Overview of Approaches to Custom Statistics
	Graphical Block-Diagram Approach
	Coded Approach
	Post-Simulation Analysis
	Example: Fraction of Dropped Messages
	Example: Computing a Time Average of a Signal
	Computation of the Time Average
	Verifying the Result

	Example: Resetting an Average Periodically
	Performance of Daily Averages
	Performance of Weekly Averages
	Computation of the Cycle Average


	Measuring Point-to-Point Delays
	Overview of Timers
	Basic Example Using Timer Blocks
	Basic Example of Post-Simulation Analysis of Timer Data

	Basic Procedure for Using Timer Blocks
	Timing Multiple Entity Paths with One Timer
	Output Switch Example
	Input Switch Example

	Restarting a Timer from Zero
	Timing Multiple Processes Independently

	Varying Simulation Results by Managing Seeds
	Connection Between Random Numbers and Seeds
	Making Results Repeatable by Storing Sets of Seeds
	Setting Seed Values Programmatically
	Sharing Seeds Among Models
	Working with Seeds Not in SimEvents Blocks
	Example: Retrieving and Changing a Seed in a Custom Subsystem

	Choosing Seed Values

	Regulating the Simulation Length
	Overview
	Setting a Fixed Stop Time
	Stopping Upon Processing a Fixed Number of Entities
	Stopping Upon Reaching a Particular State
	Tips for Using State-Based Stopping Conditions



	Using Stateflow Charts in SimEvents Models
	Role of Stateflow Charts in SimEvents Models
	Guidelines for Using Stateflow and SimEvents Blocks
	Examples Using Stateflow Charts and SimEvents Blocks
	Failure State of Server
	Go-Back-N ARQ Model
	Receiver State
	Transmitter State



	Debugging Discrete-Event Simulations
	Overview of Debugging Resources
	Overview of the SimEvents Debugger
	Starting the SimEvents Debugger
	The Debugger Environment
	Debugger Command Prompt
	Simulation Log in the Debugger
	Key Parts of the Simulation Log
	Optional Displays of Event Calendar in the Simulation Log
	Interpreting the Simulation Log
	Event Scheduling, Execution, and Cancelation Messages
	Sample Scheduling Message
	Sample Independent Execution Message
	Sample Cancelation Message
	Detection Messages
	Sample Detection Message
	Entity Operation Messages
	Sample Entity Advancement Message
	Sample Queuing Message
	Sample Attribute Assignment Message
	Sample Preemption Message
	Sample Entity Replication Message
	Sample Entity Destruction Message
	Monitoring Block Messages
	Sample Scope Message
	Sample Workspace Message
	Initialization Messages
	Signal Operation Messages
	Sample Signal Update Detection Message
	Sample Executing Signal Block Message
	Execution of Time-Based Blocks in Event-based Systems Block Mess

	Identifiers in the Debugger

	Independent Operations and Consequences in the Debugger
	Significance of Independent Operations
	Independent Operations
	Consequences of Independent Operations
	Relationships Among Multiple Consequences


	Stopping the Debugger
	How to End the Debugger Session
	Comparison of Simulation Control Functions

	Stepping Through the Simulation
	Overview of Stepping
	When to Step
	When Not to Step

	How to Step
	Choosing the Granularity of a Step
	Taking the Smallest Possible Step
	Taking a Larger Step By Skipping Consequences
	For Further Information

	Tips for Stepping Through the Simulation

	Inspecting the Current Point in the Debugger
	Viewing the Current Operation
	Obtaining Information Associated with the Current Operation

	Inspecting Entities, Blocks, and Events
	Inspecting Entities
	Inspecting Location, Scalar Attributes, Timeouts, and Timers
	Inspecting Nonscalar Attribute Values
	Interpretation of Entity Location

	Inspecting Blocks
	Procedure for Inspecting Blocks
	Result of Inspecting Queue Blocks
	Result of Inspecting Server Blocks
	Result of Inspecting Other Storage Blocks
	Result of Inspecting Nonstorage Blocks

	Inspecting Events
	Obtaining Identifiers of Entities, Blocks, and Events

	Working with Debugging Information in Variables
	Comparison of Variables with Inspection Displays
	Functions That Return Debugging Information in Variables
	How to Create Variables Using State Inspection Functions
	Tips for Manipulating Structures and Cell Arrays
	Example: Finding the Number of Entities in Busy Servers

	Viewing the Event Calendar
	For Further Information

	Customizing the Debugger Simulation Log
	Customizable Information in the Simulation Log
	Tips for Choosing Appropriate Detail Settings
	Effect of Detail Settings on Stepping
	Example: Skipping Entity Operations When Stepping
	How to View Current Detail Settings
	How to Change Detail Settings
	Example: Including Event Calendar Information Using a Parameter/
	Example: Including Event Calendar Information Using a Structure
	How to Save and Restore Detail Settings
	Example: Omitting and Reinstating Entity Messages

	Debugger Efficiency Tips
	Executing Commands Automatically When the Debugger Starts
	Tips for Creating a StartFcn Cell Array

	Creating Shortcuts for Debugger Commands

	Defining a Breakpoint
	What Is a Breakpoint?
	Identifying a Point of Interest
	Tips for Identifying Points of Interest

	Setting a Breakpoint
	Warning When Setting Certain Breakpoints

	Viewing All Breakpoints
	Sample Breakpoint List

	Using Breakpoints During Debugging
	Running the Simulation Until the Next Breakpoint
	Point at Which the Debugger Suspends the Simulation

	Ignoring or Removing Breakpoints
	Enabling a Disabled Breakpoint

	Block Operations Relevant for Block Breakpoints
	Attribute Function
	Attribute Scope
	Cancel Timeout
	Discrete Event Signal to Workspace
	Enabled Gate
	Entity Combiner
	Entity Departure Counter
	Entity Departure Function-Call Generator
	Entity Sink
	Entity Splitter
	Event-Based Entity Generator
	Event Filter
	FIFO Queue
	Get Attribute
	Infinite Server
	Input Switch
	Instantaneous Entity Counting Scope
	Instantaneous Event Counting Scope
	LIFO Queue
	N-Server
	Output Switch
	Path Combiner
	Priority Queue
	Read Timer
	Release Gate
	Replicate
	Schedule Timeout
	Set Attribute
	Signal Latch
	Signal Scope
	Signal-Based Function-Call Event Generator
	Single Server
	Start Timer
	Time-Based Entity Generator
	X-Y Attribute Scope
	X-Y Signal Scope
	Animating 
	Introduction
	Starting and Stopping Animation
	Animating Signals and Entities
	Controlling Animation Speed
	Animating the Output Switching Using Signal Model

	Common Problems in SimEvents Models
	Unexpectedly Simultaneous Events
	Unexpectedly Nonsimultaneous Events
	Unexpected Processing Sequence for Simultaneous Events
	Unexpected Use of Old Value of Signal
	Example: Using a Signal or an Attribute

	Effect of Initial Value on Signal Loops
	Example: Incorrect Initial Value in Signal Loop
	Example: Faulty Logic in Feedback Loop

	Loops in Entity Paths Without Sufficient Storage Capacity
	Example: Deadlock Resulting from Loop in Entity Path

	Unexpected Timing of Random Signal
	Example: Invalid Connection of Event-Based Random Number Generat

	Unexpected Correlation of Random Processes
	Detecting Nonunique Seeds and Making Them Unique

	Blocks that Require Event-Based Signal Input

	Recognizing Latency in Signal Updates

	Learning More About SimEvents Software
	Execution of Blocks Having Event-Based Input Signals
	Response to Event-Based Input Signals
	Example: Execution of a Computational Block

	Arbitrary Execution Sequences

	Event Sequencing
	Processing Sequence for Simultaneous Events
	Role of the Event Calendar
	For Further Information

	Choosing How to Resolve Simultaneous Signal Updates
	Resolution Sequence for Input Signals
	Detection of Signal Updates
	Example of Signal Updates and Reactions
	Effect of Simultaneous Operations
	Example of Simultaneous Signal Updates
	Resolving the Set of Operations
	Specifying Event Priorities to Resolve Simultaneous Signal Updat
	Schematic Showing Application Processing
	Use of the Event Calendar
	Use of Event Priority Values

	Resolving Simultaneous Signal Updates Without Specifying Event P
	System-Priority Events on the Event Calendar
	Unprioritized Reactions to Signal Updates

	For Further Information

	Livelock Prevention
	Overview
	Permitting Large Finite Numbers of Simultaneous Events

	Signal-Based Event Cycle Prevention
	Error Caused by Signal-Based Event Cycle
	Resolution Using Atomic Subsystem and Unit Delay Blocks
	Alternative Resolution Using Signal Latch Block
	Notifications and Queries Among Blocks
	Overview of Notifications and Queries
	Querying Whether a Subsequent Block Can Accept an Entity
	Notifying Blocks About Status Changes

	Notifying, Monitoring, and Reactive Ports
	Overview of Signal Input Ports of SimEvents Blocks
	Notifying Ports
	Monitoring Ports
	Reactive Ports

	Interleaving of Block Operations
	Overview of Interleaving of Block Operations
	How Interleaving of Block Operations Occurs
	Example: Sequence of Departures and Statistical Updates
	Altering the Processing Sequence
	Consequences of Inserting a Storage Block


	Update Sequence for Output Signals
	Determining the Update Sequence
	Example: Detecting Changes in the Last-Updated Signal

	SimEvents Support for Simulink Subsystems
	Variant Subsystems
	Virtual and Nonvirtual Subsystems

	Storage and Nonstorage Blocks
	Storage Blocks
	Nonstorage Blocks

	Blocks That Support Event-Based Input Signals
	Computational Blocks
	Sink Blocks
	SimEvents Blocks
	Other Blocks


	Migrating SimEvents Models
	Introduction
	Using seupdate to Convert a SimEvents Model
	Expected Changes to Model Contents

	Using seupdate
	After You Convert
	Changes in Behavior of the Model

	Model Behavior Changes
	Time-Based Execution in Previous Model
	Algebraic Loops
	Queue Blocks
	Workaround

	Initial Values
	p Port Values
	Changes in Triggering
	Gateway Blocks Convert Bus Signals to Non-Bus Signals 

	Multiple Hits at Time 0

	Migration Limitations
	Potential Misleading Output


	Examples
	Attributes of Entities
	Counting Entities
	Queuing Systems
	Working with Events
	Working with Signals
	Server States
	Routing Entities
	Gates
	Timeouts
	Troubleshooting
	Statistics
	Timers

	Index

	tables
	Converting Numerical Data Signals
	Converting Function-Call Signals
	Details
	Example
	Modeling Tip
	Modeling Tip
	Modeling Tip
	Example
	Modeling Tips
	Example
	Modeling Tips
	Obtaining Entity Identifiers
	Obtaining Block Identifiers
	Obtaining Event Identifiers
	Tip
	Tip
	Tip
	Tip
	Tip
	List of Notifying Ports
	List of Monitoring Ports
	List of Reactive Ports


